


Introduction

Python Knight is not just a book; it’s your ultimate guide to
mastering Python, crafted with care and precision by 
Needi Developer, a passionate educator and developer with
a vision to simplify programming for everyone. Whether
you're taking your first steps in Python or looking to sharpen
your existing skills, this book equips you with the tools to
become a true knight in the world of coding.

 What Makes Python Knight Unique?

Step-by-Step Journey: This book guides you from
Python's fundamentals to advanced concepts with real-
world examples and practical exercises.
Knight's Quest for Excellence: Like a knight embarks on an
adventurous quest, you'll explore topics ranging from
basic syntax to object-oriented programming, data
structures, and more.
Real-Life Applications: Beyond theory, the book dives into
real-life coding challenges, empowering you to solve
problems like a pro.
Interactive Learning: With quizzes, coding challenges, and
projects, Python Knight ensures you actively engage with
every topic.

 About the Author: Needi Developer

Needi Developer is a trailblazer in the tech world, blending a
passion for teaching with hands-on experience in software
development. With a mission to make programming
accessible to everyone, Needi has dedicated their efforts to
creating intuitive courses and resources that cater to
learners from all walks of life. Their motto? “Code to create,
learn to lead.”



Understanding the unique challenges faced by learners in
Asia, especially those for whom English is not a primary
language, Needi has gone the extra mile to ensure
inclusivity. Python Knight is available in two distinct versions:

Hinglish/Roman Urdu Version – Tailored for learners in
South Asia, this version helps those who may struggle
with traditional English resources to easily grasp
programming concepts.
English Version – A universal edition designed for readers
worldwide.

By offering Python Knight for free, Needi Developer aims to
break barriers to education, ensuring that everyone—
regardless of background—has the opportunity to learn and
grow in the ever-evolving world of technology. This initiative
is a testament to Needi’s unwavering commitment to
empowering individuals to unlock their potential and build a
brighter future.
Join the journey and discover how coding can transform
lives, one learner at a time.



 CONTENTS
6 ------ Lesson 1: Basics of Python
6 ------ What is Python?
9 ------ Installing Python and VS Code
14 ----- Writing and Running Python Scripts.
17 ----- Python Syntax and Comments.
21 ----- Exercise: Short Quiz.

23 ----- Lesson 2: Variables and Data Types
23 ----- Variables.
24 ----- Constants.
24 ----- Keywords.
26 ----- Data Types.
29 ----- Type Conversion.
32 ----- Input and Output.
35 ----- Exercise: Simple Calculator.

36 ----- Lesson 3: Strings
36 ----- Strings.
40 ----- String Methods.
44 ----- Escape Sequence.
47 ----- f-Strings (Formatted Strings).
49 ----- Docstrings (Documentation Strings).
51 ----- Exercise: String Manipulation Program.

52 ----- Lesson 4: Control Flow
52 ----- if, elif, else statements.
56 ----- Loops.
60 ----- Break, Continue and Pass.
64 ----- Shorthand if-Else.
49 ----- Docstrings (Documentation Strings).
66 ----- Exercise: ATM Simulation.

67 ----- Lesson 5: Functions
67 ----- Defining Functions and Return.
70 ----- Functions Arguments.
73 ----- Exercise: Prime Number Check.

74 ----- Lesson 6: Data Structures
74 ----- List.
77 ----- Tuples.
80 ----- Sets.
85 ----- Dictionaries.
88 ----- Enumerates and Zip Functions.
91 ----- Exercise: Data Structures Puzzle.



92 ----- Lesson 7: Error Handling
92 ----- Introduction to Errors and Exceptions.
94 ----- How to Handle Exceptions?
97 ----- Raising Custom Errors
101 ---- Debugging Basics.

105 ----- Lesson 8: File Handling
105 ----- Reading and Writing Files.
108 ----- Important Methods in File Handling.
111 ----- Understanding seek() and tell() Functions in File Handling.
114 ---- Exercise: File-Based-To-Do List Program.

115 ----- Lesson 9: Object-Oriented Programming
115 ----- Classes and Objects.
118 ----- Constructors and Instance Methods.
122 ----- Inheritance.
128 ----  Method Overriding.
132 ---- Class Methods vs Static Methods.
135 ---- Magic (Dunder) Methods.
138 ---- Operator Overloading.
142 ---- Exercise: Build a Simple Banking System.

143 ----- Lesson 10: Python Modules
143 ----- Modules.
146 ----- if __name__ == "__main__".
148 ----- Installing Third-Party Libraries with pip.
151 ----  Virtual Environments (venv).
154 ---- Exercise: File Management Script.

155 ----- Lesson 11: Advanced Python Concepts
155 ----- Introduction to Generators and Iterators.
158 ----- Map, Filter, and Reduce Function.
161 ----- Lambda Functions.
164 ----  Walrus Operator (:=).
167 ---- Mega Knight Projects.

171 ----- Advanced Tips For Becoming a Python Knight



Lesson 1: Basics of Python

 Python Ki Khasiyat

Simple aur Easy-to-Learn: Python ki syntax (likhne ka
tareeqa) bilkul simple aur human-readable hai. Agar
aapko basic English samajh aati hai, to aap Python
seekhna shuru kar sakte hain.

Python ek high-level programming language hai jo aaj
duniya ki sabse popular aur powerful languages me se ek
hai. Ye language 1991 me Guido van Rossum ne design ki thi.
Python ka naam ek comedy show "Monty Python's Flying
Circus" se inspired hai, iska snakes se koi lena dena nahi hai!
😄

Example:

What Is Python

Multipurpose Language: Python ko har tarah ke kaam ke
liye use kiya ja sakta hai:

Web Development (e.g., Django, Flask frameworks)
Data Science aur Machine Learning
Game Development
Mobile Apps aur Desktop Apps
Web Scraping (data collect karna websites se)
Automation (repetitive tasks automate karna)

Free Aur Open Source: Python ek free aur open-source
language hai, matlab aap ise free use kar sakte hain aur
modify bhi kar sakte hain apne use ke hisaab se.
Cross-Platform: Python har operating system (Windows,
Mac, Linux) pe chalti hai. Aap ek jagah code likhein aur
wo har jagah kaam karega.

Is code se screen par "Hello World!" print hoga. 

print("Hello World!")



Large Community: Python ki ek badi aur active
community hai. Matlab agar aapko kahin problem aaye,
to bohot saare log aapki madad karne ke liye ready hote
hain.

 Python Kyu Seekhein?

Beginner-Friendly: Agar aap programming me naye
hain, to Python seekhna sabse best hai. Ye easy aur
logical hai.
Job Opportunities: Python developers ki demand har field
me barh rahi hai, aur iski salaries bhi achhi hoti hain.
Automation: Aap boring aur repetitive kaam automate
kar sakte hain Python se.
Projects Banane Ke Liye Best: Chhoti apps se lekar bade
AI projects tak, Python har tarah ke projects ke liye
perfect hai.

 Python Ki Features

Dynamic Typing: Variables ko declare karne ki zarurat
nahi hoti. Example:

Libraries Ka Treasure: Python ke paas 140,000+ libraries
hain jo alag-alag kaam ke liye use hoti hain, jaise:

NumPy aur Pandas: Data analysis ke liye.
Matplotlib aur Seaborn: Data visualization ke liye.
TensorFlow aur PyTorch: Machine Learning ke liye.

Integration: Python doosri languages (C, C++, Java) aur
tools ke saath easily integrate ho jata hai.

 Python Ki Features

Python ka future bohot bright hai! AI, Data Science, aur Web
Development jese fields me iska istemal barhta ja raha hai.
Beginners aur professionals dono ke liye ye ek ideal
language hai.

x = 10 # Python automatically samajhta hai k x ek integer hai. 



 Ek Simple Python Example

Aayiye ek chhota sa program likhte hain jo numbers ka sum
calculate kare:

 Conclusion

Python ek all-rounder language hai jo easy aur powerful hai.
Agar aapko programming seekhni hai ya career banana
hai, to Python ek perfect start hai. Ab der kis baat ki? Aaj hi
Python seekhna shuru karein aur naye opportunities explore
karein! 🚀

# Es program ko dekh kar ghabraiye mat ye just ek example hai
# Do numbers ka sum calculate karne ka program
num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))

sum = num1 + num2

print("Sum of", num1, "and", num2, "is", sum)
# Es program ko aagy mazeed tafseel say samjhay gay

The full lesson is now available on the Needi Developer
YouTube channel.



Installing Python and VS Code

 Step 1: Python Install Karna

  1. Python Website Visit Karein

 2. Download Python

 3. Installer Run Karein

Python aur VS Code install karna programming ki journey ka
pehla aur important step hai. Aayiye step-by-step process
ko samajhte hain:

Python ko install karna bohat simple hai es mai koi rocket
science nahi hai, bas neeche waly steps ko follow karein:

Python ki official website open karein:
https://www.python.org.

Website par "Download Python" ka button dikhai dega, jo
aapke system ke hisaab se version suggest karega
(Windows, Mac, ya Linux).
Tip: Hamesha latest stable version download karein.

Python installer file ko open karein.

Windows me es 
tarah ki file hogi us 
ko run kary

https://www.python.org/


 4. Add Python to PATH 

 5. Install Karna

 Step 2: Python Installation Verify Karna

 1. Command Prompt Open Karein (Windows)

 2. Python Version Check Karein

(Important)
Installer shuru karte hi ek checkbox dikhai dega: "Add
Python to PATH".

Is box ko zaroor check karein, warna baad me manual
configuration karna padega.

Customize Installation ya Install Now ka option dikhai
dega. Beginners ke liye "Install Now" par click karna best
hai.
Install hone ke baad "Close" par click karein.

Python install hone ke baad check karein ke sab kuch theek
se kaam kar raha hai ya nahi.

Windows Key + R press karein, aur “cmd” type karein.

Command prompt me type karein:

Agar output me Python ka version (Python 3.12.6) dikhai
de ya es say zyada, to iska matlab installation sahi hai.

python --version



 3. Python REPL Test Karein

Command prompt me type karein:

Aapko Python ka interactive shell dikhai dega, jaha aap
code likh sakte hain.

 Step 3: VS Code Install Karna

VS Code ek powerful aur lightweight code editor hai jo
Python ke liye perfect hai. Installation process neeche diya
gaya hai:

 1. VS Code Website Visit Karein

Official website open karein:
https://code.visualstudio.com.

 2. Download VS Code

"Download for Windows/Mac/Linux" ka button dikhai
dega. Apne operating system ke hisaab se installer
download karein.

 3. Installer Run Karein

Download hone ke baad installer file ko open karein.

 4. Installation Settings Configure Karein

Terms and Conditions accept karein.
Recommended:

"Add to PATH" option check karein.
"Create Desktop Shortcut" bhi select karein.
Behtar ye hai  kay sary Checkboxes hi click kr dein 

python

https://code.visualstudio.com/


 5. Install Karein

Install button par click karein aur complete hone ke baad
"Finish" karein.

 Step 4: Python Environment VS Code Me Set Karna

Python aur VS Code ko connect karna important hai. Follow
these steps:

 1. Open VS Code

Desktop shortcut ya start menu se VS Code open karein.

 2. Python Extension Install Karein

Extensions Icon (left side bar me box icon) par click
karein.
Search Bar me Python type karein.
Official Microsoft Python extension ko install karein.

 3. Python Interpreter Select Karein

Bottom-right corner me "Select Interpreter" ka option
dikhai dega.
Apne installed Python version ko select karein
(Python 3.12) ya es say above jo apny latest install kiya.

 4. Test Python Script in VS Code

Ek new file create karein aur extension .py save karein,
jaise:

main.py



Isme likhein:

File ko run karne ke liye Run Button ya Ctrl + F5 press
karein.

 Common Issues and Solutions

 1. Python Not Recognized Error

Aapne "Add Python to PATH" option miss kar diya hoga.
Solution: PATH environment variable manually configure
karein ya Python reinstall karein.

 2. VS Code Me Python Run Nahi Ho Raha

Check karein ke Python interpreter sahi select hua hai ya
nahi.
Solution: Bottom bar me interpreter select karein.

 Conclusion

Ab aapke system me Python aur VS Code install hai, aur
aap ready hain apna pehla program likhne ke liye!
Yahi se aapki Python journey shuru hoti hai. Practice karte
rahiye aur naye concepts explore karein.

print("Hello World!")

The full lesson is now available on the Needi Developer
YouTube channel.



Writing and Running Python Scripts.
Python ki scripts likhne aur run karne ka process bohot
simple aur user-friendly hai. Aayiye step-by-step esko
samajhte hain:

 Step 1: Python Script Kya Hai?

Python script ek text file hoti hai jisme Python code likha
jata hai. Is file ka extension .py hota hai, jaise:

Python script ko aap multiple ways se likh aur run kar sakte
hain.

 Step 2: Python Script Likhnay Ke Tools

Python script likhne ke liye aapko ek code editor ya IDE
chahiye.
Recommended Tools:

VS Code (Visual Studio Code): Lightweight aur
beginner-friendly.

1.

PyCharm: Thora heavy hai low-end pc ky liye
recommend nahi hai or use karna thora sa complex
hai.

2.

IDLE: Python ke saath default aata hai.3.
Notepad++: Simple text editor.4.
Jupyter Notebook: Data science aur
experimentation ke liye best.

5.

main.py



 Step 3: Python Script Likhnay Ka Tareeqa

  1. VS Code Me Script Likhein

File Create Karein:
VS Code open karein aur ek nayi file banayein.
File ko .py extension ke saath save karein. Example:

Code Likhein:
File me apna Python code likhein. 

Example:

 2. IDLE Me Script Likhein

IDLE open karein aur File → New File select karein.
Code likhne ke baad file ko .py extension ke saath save
karein.

 Step 4: Python Script Ko Run Karna

Python script ko run karne ke liye aapke system me Python
installed hona chahiye.
Agar apny uper waly steps follow kiye hai to apkay
computer me python install ho gaya hai.

 1. Command Prompt (Windows) Ya Terminal
(Mac/Linux) Se Script Run Karna

Apni .py file ka path find karein.

Example: Agar file C:\PythonScripts\main.py me hai, to
path yahi hoga.

main.py

print("Hello World!")



Terminal/Command Prompt open karein.
Ye command type karein

Agar output me Hello World! print ho, to aapka code
sahi run ho gaya.

 2. VS Code Me Script Run Karna

Apni Python file open karein.
Top bar me "Run" button dikhai dega, uspe click karein
ya Ctrl + F5 press karein.
Output VS Code ke terminal me dikhai dega.

 3. IDLE Me Script Run Karna

IDLE me apni .py file open karein.
Press F5 ya Run → Run Module select karein.
Output IDLE shell me dikhai dega.

 Conclusion

Python scripts likhna aur run karna ek beginner-
friendly process hai.

python C:\PythonScripts\main.py

The full lesson is now available on the Needi Developer
YouTube channel.



Python Syntax and Comments

 1. Python Syntax

Python me syntax ek set of rules hota hai jo ye define karta
hai ki program ka code kaise likhna hai aur kaise execute
hoga. Agar syntax ka dhyan nahi diya gaya, to Python
interpreter error throw karega.

Python ka syntax simple aur beginner-friendly hai. Iski
readability isko dusri languages se alag banati hai.
Yahaan kuch basic syntax rules hain:

 1. Indentation:

Python indentation (spaces) ka use karta hai block of code
ko define karne ke liye. Ye dusri languages jese {} ya ; ke
jagah use hota hai.

Example:

Second line me print sy pehlay jo space hai use indent
kehtay hai.

 2. Case Sensitivity:

Python mein variables aur keywords case-sensitive hote
hain.

Example:

if True:
   print("This is indented!") #proper indentation

my_var = 5
My_var = 10
print(my_var) #Output: 5
print(My_var) #Output: 10



 3. Statements:

 4. Keywords:

 2. Python Comments

 1. Single-Line and inline Comments:

# This is a single line comment
print("Hello, Comments!") # This is an inline comment

# symbol se start hote hain.

Example:

Har statement ek alag line me likha jata hai. Agar ek hi line
me multiple statements likhne hon, to ; (semicolon) ka use
hota hai.

Example:

Python me kuch reserved words hain jinko as a variable ya
function name use nahi kar sakte. 

Example: if, else, for.

Comments ko code me documentation ke liye use kiya
jata hai. Ye code ka wo part hote hain jo execute nahi hota.
Comments ka purpose code ko readable aur
understandable banana hai.

Agar ap apni help kay liye koi note wagera kisi 
block-of-code par lgana chahty hai to comments ki help
say lga saktay hai

Types of Comments:

Ye Gray Color wali 

Lines Comments hai.

print("Python");print("Knight") #multiple statements in one line



 2. Multi-Line Comments:

Triple quotes (''' or """) ka use karke multi-line comments
likhe ja sakte hain.

Example:

 Why Use Comments?

 1. Code Explanation:

Complex code ko explain karne ke liye.

Example:

 2. Code Debugging:

Specific lines ko temporarily disable karne ke liye.

Example:

""" 
This is a multi-line comment. It spans multiple lines.
"""
print("Multi-line, Comments!")

# Check is a number is even
number = 10
if number % 2 == 0:
  print("Number is even")

# print("This won't execute")
print("This will execute")



 3. Documentation:

Code ka purpose aur logic batane ke liye helpful.

Chaliye kuch funny example dekhtay hai:

 Conclusion:

Python syntax aur comments code ko clean aur
understandable banate hain. Indentation ka dhyan
rakhein, aur comments ka use karke apna code aur
readable banayen.

# This program checks if Batman is hungry or not
is_hungry = True
if is_hungry:
  print("Batman need snacks")
else:
  print("Batman is full!")

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

 1. Multiple Choice

 2. True or False

Python me comment likhne ka sahi tareeqa kya hai?
a) // Ye ek comment hai
b) # Ye ek comment hai
c) /* Ye ek comment hai */
d) Inme se koi nahi

Python case-sensitive hota hai, matlab
 Var aur var ko ek hi variable maana jata hai.

 3. Fill in the Blank

Python me comments likhne ke liye _______ symbol ka
use hota hai.

 4. Identify the Error

Niche diye gaye code me kya galat hai?

Python me blocks of code define karne ke liye
indentation zaroori hai.

if 10 > 5:
print("10 is greater than 5")



 Answers :

(b)1.
(False) (True)2.
(#)3.
print statement indented nahi hai.4.



Lesson 2: Variables and Data Types

Variables

Variables Python me aise containers hote hain jisme hum
data store karte hain, just like a jar, jis me hum cheezein
store karte hain. Har jar ka apna naam hota hai (variable
name), aur isme hum alag alag type ka data rakh sakte
hain.

Example:

Sochiye aap ek shop me kaam kar rahe hain aur aapko
alag alag cheezon ke price save karne hain. Har cheez ke
price ko ek variable me store karte hain:

Output:

 Data Containers

Naam letter (a-z, A-Z) ya underscore (_) se shuru hona
chahiye.
Naam me numbers aa sakte hain, lekin pehle position
pe nahi jaise: (price1 valid hai, 1price invalid hai).
Variables case-sensitive hote hain Jaise: (age aur Age
alag hain).

 Rules for Naming Variables:

apple_price = 100
banana_price = 50
mango_price = 170

print("Apple price is",apple_price)
print("Banana price is",banana_price)
print("Mango price is",mango_price)

Apple price is 100
Banana price is 50
Mango price is 170



 Fixed Values

Constants wo hoti hain jo kabhi change nahi hoti, jaise
hamari daily life me ek kilogram = 1000 grams hota hai.
Python me constants ko ALL_CAPS me likha jata hai.

Example:
Sochiye, aap ek calculator bana rahe hain aur PI ka value
fix rakhna chahte hain:

Constants

Although Python me aap constants ko change kar sakte
hain, lekin aapko achi coding practice ke liye unhe
badalne nahi chahiye.

Keywords

 Reserved Words

Keywords Python ke special words hote hain jo
programming ke rules define karte hain. Inka use variable
names ke liye nahi kar sakte.

Example:
Jaise traffic signals me STOP ka matlab hamesha rukna
hota hai, waise hi Python ke keywords ka specific meaning
hota hai.

Some Common Keywords:
if, else, for, while, def, return, import, etc.

PI = 3.14159 # Fixed Value of PI
GRAVITY = 9.8 # Acceleration due to gravity

circle_radius = 5
area = PI * (circle_radius ** 2)

print("Area of the circle is: ", area)



 Keywords in Action:

 Conclusion

Variables, constants, aur keywords Python ke foundation
hain. Variables data ko handle karne me madad karte
hain, constants un values ko fix rakhte hain jo change nahi
hoti, aur keywords programming ka basic syntax banate
hain.

if 10 > 5: # if is a keyword
  print("10 is greater than 5")
else: # else is also a keyword
  print("5 is greater than 10")

The full lesson is now available on the Needi Developer
YouTube channel.



Data Types
Python me har data ka ek type hota hai jo define karta hai
ke wo data kya hai aur uske sath kya operations kiye ja
sakte hain. Data types ki madad se aap Python ko batate
ho ke kisi value ko kaise handle karna hai.

 1. Integer (int)

Definition:
Integer wo numbers hote hain jo bina decimal ke hote
hain, jaise 1, -5, 100, etc.

Example:

 2. Float (Decimal Numbers)

Definition:
Float wo numbers hote hain jo decimal ke sath hote hain,
jaise 3.14, -2.5, 0.0, etc.

Example:

age = 20
apples = -10
distance = 300

print("Age:",age)
print("Apples:",apples)
print("Distance:",distance)

PI = 3.14
temperature = 6
height = 6

print("PI:", PI)
print("Temperature:", temperature)
print("Height:", height)



 3. String (str)

Definition:
String wo data type hai jo text ya characters store karta
hai. Strings hamesha quotation marks (' ' ya " ") me likhe
jate hain.

Example:

name = "Ali"
greeting = 'Hello, World!'
city = "Karachi"

print("Name:", name)
print("Greeting:", greeting)
print("City:", city)

 4. Boolean (bool)

Definition:
Boolean sirf do values store karta hai: True ya False.

Example:

is_raining = True
has_license = False

print("Is it raining?", is_raining)
print("Has driving license?", has_license)

 4. Boolean (bool)

Definition:
None ka matlab hai kuch bhi nahi. Jab aapko ek variable
banana ho lekin abhi koi value assign nahi karni ho, to aap
None use karte hain.

Example:

future_plan = None

print("Future Plan:", future_plan)



Data Type Example Use Case

int 10, -5, 100 Age, quantity, counters.

float 3.14, -2.5 Temperature, height, area.

str Hello Names, addresses, messages.

bool True, False Status checks, conditions.

None None Placeholder, empty values.

Quick Comparison of Data Types

 Conclusion

int: For whole numbers.
float: For decimal numbers.
str: For text data.
bool: For true/false logic.
None: For "no value yet."

The full lesson is now available on the Needi Developer
YouTube channel.



Type Conversion
Type conversion ka matlab hai ek data type ko doosre
data type me badalna. Python me aap easily ek type se
doosre type me convert kar sakte ho, is process ko type
casting bhi kehte hain. 

Type conversion do tarah ka hota hai:
1. Implicit Type Conversion
    Python khud se (automatically) ek data type ko doosre
me convert kar deta hai.
2. Explicit Type Conversion
     Programmer manually ek data type ko doosre me
badalta hai.

 1. Implicit Type Conversion

Yeh tab hota hai jab Python khud data type ko convert
karta hai bina kisi error ke.
Python yeh sirf un situations me karta hai jaha koi data
loss na ho.

Example:

# Implicit Conversion
num_int = 5        # Integer
num_float = 2.5    # Float
result = num_int + num_float

print("Result:", result)         # 7.5
print("Type of result:", type(result))  # Float

Explanation:
5 ek integer hai, aur 2.5 ek float hai.
Jab in dono ko add kiya gaya, Python ne integer 5 ko
automatically float me convert kar diya 5.0 taake
calculation smooth ho.



 2. Explicit Type Conversion

Function Use Example

int() Kisi value ko integer me badalna int(3.5) → 3

float() Kisi value ko float me badalna float(5) → 5.0

str() Kisi value ko string me badalna str(5) → "5"

bool() Kisi value ko boolean me badalna bool(1) → True

Is process me programmer khud se type conversion karta
hai using built-in functions.

Common Type Conversion Functions:

 Converting to Integer

Float ya string ko integer me badalne ke liye int()
function use hota hai.
Decimal wali value truncate (remove) ho jati hai.

num_float = 4.7
num_str = "10"

# Convert to int
int_from_float = int(num_float)  # 4
int_from_str = int(num_str)      # 10

print(int_from_float, int_from_str)

Example:

 Converting to Integer

Kisi bhi value ko string me convert karne ke liye str()
use hota hai.

Example:

num = 10
pi = 3.14
# Convert to string
str_num = str(num)   # "10"
str_pi = str(pi)     # "3.14"
print("String:", str_num + " is an integer")
print("String:", str_pi + " is a float")



 Converting to Boolean

Kisi value ko boolean me badalne ke liye bool() use
hota hai.
Python me, kuch values hamesha False hoti hain:

Baaki sab True hoti hain.

0
None
Empty values: "", [], {}, ()

val1 = 0
val2 = 10
val3 = " "

# Convert to boolean
bool1 = bool(val1)  # False
bool2 = bool(val2)  # True
bool3 = bool(val3)  # False

print(bool1, bool2, bool3)

 Conclusion

Implicit conversion automatic hoti hai jab data loss ka
koi risk na ho.
Explicit conversion me aapko khud se data type convert
karna padta hai.
Python ke built-in functions jaise int(), float(), str(), aur
bool() is process ko simple banate hain.

Type conversion har programming task me zaroori hoti hai,
especially jab user input ya data processing ke waqt data
type consistent rakhna ho.

Example:

The full lesson is now available on the Needi Developer
YouTube channel.



Input and Output
Python me input aur output handle karne ke liye built-in
functions hote hain.

Input: User se data lena.
Output: Screen par data dikhana.

 Output (print())

print() function ka use output ko screen par display karne
ke liye hota hai.

Syntax:

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

*objects: Multiple items ko output kar sakte hain.
sep: Objects ke beech separator, default ' '.
end: Line end hone ke baad kya likhna hai, default '\n'.
file: Jaha output chahiye (default screen).
flush: Output ko turant dikhane ke liye.

Example: Basic Usage

# Simple print statement
print("Hello, Python!")  # Output: Hello, Python!

# Printing multiple items
name = "Ali"
age = 20
print("Name:", name, "Age:", age)  # Output: Name: Ali Age: 20

# Using custom separators and endings
print("Python", "is", "fun", sep="-", end="!")  # Output: Python-is-fun!



 Input (input())

input() function ka use user se data lene ke liye hota hai.
Jo bhi user type karta hai, wo string format me return hota
hai.

Syntax:
input(prompt)

prompt: User ko message ya instruction dene ke liye.

Example: Basic Input

# Asking the user's name
name = input("Enter your name: ")

print("Hello,", name + "!")

 Converting Input

Input hamesha string hota hai, lekin agar aapko number
ya kisi aur type ka data chahiye ho, to aapko explicit type
conversion karna padega.

Example: Integer Input

# Taking two numbers and adding them
num1 = int(input("Enter first number: "))  # Convert input to integer
num2 = int(input("Enter second number: "))  # Convert input to integer

result = num1 + num2
print("The sum is:", result)

Example: Float Input

height = float(input("Enter your height in meters: "))

print("Your height is:", height, "meters")



 Conclusion

print() is used for displaying output, and you can style
it using f-strings or separators.
input() allows you to get user data, but remember to
convert it to the desired type for calculations.

Input and output are essential tools for creating interactive
programs.

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise
Create a Python program that acts as a simple calculator.
The program should:

Take two numbers from the user.
Perform the following operations using variables:
addition, subtraction, multiplication, and division.
Display the results for each operation.



Lesson 3: Strings

Strings
Strings Python me text ko represent karne ke liye use hote
hain. Strings ek sequence of characters ka collection hote
hain jo quotes (single ya double) ke andar likhe jate hain.

 What is a String?

A string ek sequence hoti hai, jo letters, digits, aur
special characters ka collection ho sakti hai.
Strings ko single quotes (''), double quotes (""), ya
triple quotes (''' or """) ke andar likha jata hai.

# Single and double quotes
name = 'Ali'
greeting = "Hello, World!"

# Triple quotes for multiline strings
multiline_string = '''This is a
multiline string!'''

Example:

 Creating Strings

1. Single Quotes:

single_quote_string = 'Hello'

2. Double Quotes:

double_quote_string = "World"

3. Triple Quotes:

triple_quote_string = '''Python
Strings
Are Cool!'''



Indexing ka use karke aap string ke kisi bhi individual
character ko access kar sakte hain. 
Python me indexing 0 se start hoti hai.

 1. String Indexing

Syntax:

string_name[index]

Examples:

text = "Python"
print(text[0])  # Output: P (first character)
print(text[5])  # Output: n (last character)

 Negative Indexing:

Negative indexing string ke end se access karne ke liye hoti
hai.

text = "Python"
print(text[-1])  # Output: n (last character)
print(text[-6])  # Output: P (First character)

 2. String Slicing

Slicing ka use string ke ek portion ya substring ko access
karne ke liye hota hai. Slicing ka syntax start index, end
index, aur step ko define karta hai.

Syntax:

string_name[start : end : step]

start: Index jahan se slicing shuru hogi (included).
end: Index jahan tak slicing chalegi (excluded).
step: Har step me kitne characters skip karne hain
(optional).



Examples:

text = "PythonProgramming"

# Basic slicing
print(text[0:6])  # Output: Python (characters 0 to 5)
print(text[6:])   # Output: Programming (from index 6 to end)

# Negative slicing
print(text[-11:-1])  # Output: Programmin

# Using step
print(text[0:12:2])  # Output: Pto rg (alternate characters)

Shortcut for Slicing:
string[:]: Puri string return karega.
string[:end]: Start se end tak substring.
string[start:]: Start se end tak.
string[::-1]: String ko reverse karega.

 3. String Operations

Python me strings ke upar bahut saare useful operations
perform kar sakte hain.

first_name = "Needi"
last_name = "Developer"
full_name = first_name + " " + last_name
print(full_name)  # Output: Needi Developer

Strings ko + operator ka use karke joda ja sakta hai.

 Concatenation (Join Strings):

 Repetition:

Strings ko * operator ka use karke repeat karna.

greet = "Hi! "
print(greet * 3)  # Output: Hi! Hi! Hi!



 Membership Testing (in / not in):

Check karega ki string me koi substring hai ya nahi.

text = "Hello World"
print("Hello" in text)     # Output: True
print("Python" not in text)  # Output: True

Summary:
Indexing: Access individual characters of a string.
Slicing: Extract portions of strings.
Operations: Combine, repeat, or check substrings.

The full lesson is now available on the Needi Developer
YouTube channel.



String Methods
String methods Python me predefined functions hote hain
jo strings ke saath operations ko asaan banate hain. Inka
use karna bohot easy hota hai, aur ye commonly text
processing ke liye kaam aate hain.

 Why String Methods Are Useful?

Strings ke operations ko asaan aur efficient banate
hain.
Real-world scenarios me, jaise user input ko clean
karna, email validation, aur text formatting ke liye kaam
aate hain.

 Commonly Used String Methods

Here’s a list of frequently used string methods with
examples:

 1. lower() and upper()

lower(): String ke saare characters ko lowercase me
convert karta hai.
upper(): String ke saare characters ko uppercase me
convert karta hai.

text = "Hello World"
print(text.lower())  # Output: hello world
print(text.upper())  # Output: HELLO WORLD

Example:

 2. strip(), lstrip(), and rstrip()

strip(): String ke start aur end ke extra spaces ko
remove karta hai.
lstrip(): Sirf left side se spaces remove karta hai.
rstrip(): Sirf right side se spaces remove karta hai.



text = "   Python   "
print(text.strip())   # Output: "Python"
print(text.lstrip())  # Output: "Python   "
print(text.rstrip())  # Output: "   Python"

Example:

 3. replace()

Ek string ke andar kisi specific character ya substring ko
replace karne ke liye use hota hai.

text = "I love Java"
print(text.replace("Java", "Python"))  # Output: I love Python

Example:

 4. find() and index()

find(): Substring ka index return karta hai (agar
substring exist kare). Agar substring na mile to -1 return
karta hai.
index(): Similar to find(), lekin agar substring na mile to
error throw karta hai.

text = "Python Programming"
print(text.find("Prog"))   # Output: 7
print(text.find("Java"))   # Output: -1
print(text.index("Prog"))  # Output: 7

Example:

 5. startswith() and endswith()

startswith(): Check karta hai agar string kisi specific
substring se shuru hoti hai.
endswith(): Check karta hai agar string kisi specific
substring par end hoti hai.

text = "Python is fun"
print(text.startswith("Python"))  # Output: True
print(text.endswith("fun"))       # Output: True

Example:



 6. split() and join()

split(): String ko ek list me convert karta hai, ek specific
delimiter ke basis par.
join(): List ke elements ko ek string me combine karta
hai, ek delimiter ke saath.

text = "apple,banana,orange"
fruits = text.split(",")  # Split by comma
print(fruits)             # Output: ['apple', 'banana', 'orange']

joined_text = " - ".join(fruits)
print(joined_text)         # Output: apple - banana - orange

Example:

 7. count()

String me kisi specific character ya substring ki occurrence
count karta hai.

text = "banana"
print(text.count("a"))  # Output: 3

Example:

 8. capitalize(), title(), and swapcase()

capitalize(): Sirf pehle character ko uppercase banata
hai.
title(): Har word ka first character uppercase banata
hai.
swapcase(): Uppercase ko lowercase aur lowercase ko
uppercase me convert karta hai.

text = "python programming"
print(text.capitalize())  # Output: Python programming
print(text.title())       # Output: Python Programming
print(text.swapcase())    # Output: PYTHON PROGRAMMING

Example:



 9. isalpha(), isdigit(), and isalnum()

isalpha(): Check karta hai agar string sirf letters
contain karti hai.
isdigit(): Check karta hai agar string sirf numbers
contain karti hai.
isalnum(): Check karta hai agar string sirf letters aur
numbers contain karti hai.

text = "Python123"
print(text.isalpha())   # Output: False
print("123".isdigit())  # Output: True
print(text.isalnum())   # Output: True

Example:

String methods Python me kaafi powerful hain, aur unka
use karna simple hai. Ye methods har jagah useful hote
hain, chahe wo user input sanitize karna ho, text formatting
ho, ya strings me searching aur replacing karna ho.

Summary:

The full lesson is now available on the Needi Developer
YouTube channel.



Escape Sequences

 What Are Escape Sequences?

 Why Use Escape Sequences?

 Common Escape Sequences

Escape Sequence Description Example Output

\n Newline (next line) Moves text to a new line

\t Horizontal Tab Adds a tab space

\' Single Quote Prints ' inside quotes

\" Double Quote Prints " inside quotes

\\ Backslash Prints \

\r Carriage Return Moves to the start of line

\b Backspace Removes one character

Escape sequences Python me special characters
represent karte hain jo directly print nahi kiye ja sakte. Inka
use karna bohot zaroori hota hai jab aapko strings ke
andar specific formatting ya special effects chahiye hote
hain.

Escape sequences strings ke andar backslash (\) ke
saath likhe jaate hain.
Ye Python ko batate hain ke agle character ko special
treat karna hai.

Strings me special characters (newline, tab, quotes) ko
include karne ke liye.
Format aur align karne ke liye.
Specific symbols ya actions perform karne ke liye.



 Examples of Escape Sequences

 1. Newline (\n)

Ek new line create karta hai:

print("Hello\nWorld")
# Output:
# Hello
# World

Example:

 2. Tab (\t)

Ek horizontal tab space add karta hai:

print("Name:\tNeedi")
# Output:
# Name:   Needi

Example:

 3. Single Quote (\') and Double Quote (\")

Single ya double quotes ko string ke andar include karne
ke liye:

print('It\'s a sunny day')  # Output: It's a sunny day
print("She said, \"Hello!\"")  # Output: She said, "Hello!"

Example:

 4. Backslash (\\)

String me ek backslash print karne ke liye:

print("This is a backslash: \\")
# Output: This is a backslash: \

Example:



 5. Carriage Return (\r)

Carriage return text ko line ke start par le jata hai:

print("Hello\rWorld")
# Output: World

Example:

 6. Backspace (\b)

Ek character ko erase karne ke liye:

print("Helloo\b!")
# Output: Hello!

Example:

Escape sequences are essential for controlling how text is
displayed in strings. Whether it's formatting output, adding
special symbols, or managing alignment, they make text
handling more powerful and flexible.

Summary:

The full lesson is now available on the Needi Developer
YouTube channel.



f-Strings (Formatted Strings)
Python me f-strings string formatting ke liye use hoti hain.
Ye tool programming ko asaan aur zyada readable
banate hain.

 What are f-Strings?

f-Strings (formatted strings) Python 3.6 me introduce hui
thi. Inka use strings me variables aur expressions directly
add karne ke liye hota hai.

 Why use f-Strings?

Simple Syntax: {} ka use karke string me variables ya
expressions insert karte hain.
Readable Code: Zyada clean aur understandable hota
hai.
Fast Performance: Purani methods (like % aur
.format()) se zyada efficient hoti hai.

 How to use f-Strings?

String se pehle f ya F lagayein aur curly braces {} ke andar
variable ya expression likhein.

 Examples of f-Strings

 1. Variables Add Karna

name = "Naveed"
age = 20
print(f"My name is {name} and I am {age} years old.")
# Output: My name is Naveed and I am 20 years old.



 2. Expressions Use Karna

x = 8
y = 4
print(f"The sum of {x} and {y} is {x + y}.")
# Output: The sum of 8 and 4 is 12.

 3. Number Formatting

price = 1234.567
print(f"Total price is {price:.2f} rupees.")
# Output: Total price is 1234.57 rupees.

 4. Function Ke Saath Use Karna

def square(num):
    return num * num

print(f"The square of 5 is {square(5)}.")
# Output: The square of 5 is 25.

The full lesson is now available on the Needi Developer
YouTube channel.



Docstrings (Documentation Strings)
 Docstrings code ko document karne ke liye use hoti hain.
Ye tool programming ko asaan aur zyada readable
banate hain.

 What are docstrings?

Docstrings Python ka ek feature hai jo functions, classes,
aur modules ko describe karne ke liye use hota hai. Ye
triple quotes (""" """ ya ''' ''') me likhe jaate hain.

 Why use docstrings?

Code ko Samajhne Me Asaani: Dusre developers ya
khud ke liye.
Documentation Tools Me Useful: Docstrings
automatically documentation banate hain (using
help() function).

 How to write docstrings?

 1. Function Ke Liye Docstring

def greet(name):
    """
    This function greets the person whose name is passed as an
argument.
    """
    return f"Hello, {name}!"

print(greet("Naveed"))
# Output: Hello, Naveed!

Docstring Explain Kar Raha Hai:
Function kya karta hai.
Argument (input) kya hona chahiye.



 2. Class Ke Liye Docstring

class Calculator:
    """
    A simple calculator class to perform basic operations.
    """

    def add(self, x, y):
        """
        Returns the sum of x and y.
        """
        return x + y

 3. Docstring Access Karna

print(help(greet))

Python ka help() function docstrings ko dekhne ke liye use
hota hai:

Summary :
f-Strings: Strings me variables aur expressions ko
asaani se include karte hain.
Docstrings: Code ko describe karte hain aur uski
documentation banate hain.

In dono tools ka use karne se code readable, clean, aur
efficient banta hai!

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

 Task: String Manipulation Program

Write a Python program that takes a string input from the
user. Perform the following tasks:

Convert the string to uppercase.
Find the length of the string.
Replace all spaces in the string with underscores (_).



Lesson 4: Control Flow

if, elif, else Statements
Python me if, elif, else statements decision-making ke liye
use hote hain. Ye program ko allow karte hain ki woh alag-
alag conditions ke basis par alag-alag actions le.

 Understanding If, Elif, Else

 1. if Statement:

If ka use ek condition check karne ke liye hota hai. Agar
condition true ho, to code execute hota hai.

if condition:
    # code to execute

 2. elif Statement (Else If):

Jab pehli if condition false ho, to elif ka use karte hain dusri
condition check karne ke liye.

elif another_condition:
    # code to execute

 3. else Statement:

Jab if aur elif dono false ho, tab else ka code execute hota
hai.

else :
    # code to execute



if condition:
    # Block of code if condition is true
elif another_condition:
    # Block of code if elif condition is true
else:
    # Block of code if all above conditions are false

 Examples of if, elif, else

age = 18

if age < 18:
    print("You are a minor.")
elif age == 18:
    print("Congratulations! You are an adult now.")
else:
    print("You are an adult.")

Output:

Congratulations! You are an adult now.

1. Basic Example:

marks = 85

if marks >= 90:
    print("Grade: A+")
elif marks >= 80:
    print("Grade: A")
elif marks >= 70:
    print("Grade: B")
else:
    print("Grade: C")

Output:

Grade: A

2. Multiple Example:

 Syntax of if, elif, else



 How It Works: Key Points

Python conditions use comparison operators like:<, >,
<=, >=, ==, !=
Code blocks under if, elif, else statements must be
indented (usually 4 spaces).

Comparison Operators name:
==: Equal to
!=: Not equal to
>: Greater then
<: Less then
>=: Greater then or equal to
<=: Less then equal to

 Examples for practice:

Aik aesa program jo ye btata hai k weather kesa hai:

temperature = 25

if temperature > 30:
    print("It's hot outside. Drink plenty of water!")
elif temperature >= 20:
    print("The weather is pleasant.")
else:
    print("It's cold outside. Wear warm clothes!")

Output:

1. Weather Decision:

The weather is pleasant.



Aik aesa program jo ye btata hai k es transaction ky bad
user ka balance ktna reh jai ga:

2. ATM Withdrawal:

balance = 5000
withdrawal = 3000

if withdrawal > balance:
    print("Insufficient balance.")
elif withdrawal == balance:
    print("Your account will be empty after this transaction.")
else:
    print(f"Transaction successful! Remaining balance: {balance - withdrawal}")

Output:

Transaction successful! Remaining balance: 2000

Aik aesa program jo ye btata hai k kis light ky on hony par
kya krna hai:

light = "Red"

if light == "Red":
    print("Stop! Wait for the green light.")
elif light == "Yellow":
    print("Get ready to go.")
else:
    print("Go! Drive safely.")

Output:

3. Traffic Light:

Stop! Wait for the green light.

Summary:
if: Checks the first condition.
elif: Adds additional conditions.
else: Executes if all conditions are false.

By mastering these statements, you can create programs
that make decisions and respond to different inputs!

S

The full lesson is now available on the Needi Developer
YouTube channel.



Loops
Python me loops ka use tab hota hai jab hume ek block of
code baar-baar repeat karna ho. 
Do main loops hain:

for loop
while loop

 1. For Loop

For loop ka use kisi sequence (list, tuple, string, ya range)
ko iterate karne ke liye hota hai.
 Ye har element ko ek-ek karke uthata hai aur code ko
execute karta hai.
Syntax:

for variable in sequence:
    # code to execute

 1: List Iterate Karna

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:
    print(f"I love {fruit}!")

I love apple!  
I love banana!  
I love cherry!

Output:

 2: Range ka Use Karna

for i in range(1, 6):
    print(f"Number: {i}")

Number: 1  
Number: 2  
Number: 3  
Number: 4  
Number: 5

Output:



 2. While Loop

 1: Basic While Loop

 2: Infinite Loop (Avoid Karna!)

While loop ka use tab hota hai jab hume ek condition ke
basis par code baar-baar chalana ho. Jab tak condition
True hai, loop chalti rahegi.

Syntax:

while condition:
    # code to execute

count = 1

while count <= 5:
    print(f"Count: {count}")
    count += 1  # Increment the count

Count: 1  
Count: 2  
Count: 3  
Count: 4  
Count: 5

Output:

while True:
    print("This is an infinite loop!")  # Use `break` to stop
    break  # Stops the loop



 Differences Between For and While

Feature For Loop While Loop

Use Case Sequence
(list, string, range) Condition-based

When to Use Fixed number of
iterations

Unknown number of
iterations

Example Iterate over a list Run until a condition is
false

 Examples for practice:

Aik aesi For Loop jo students ko present print kary gi:

students = ["Naveed", "Noor", "Shahzad", "Ahmed", "Ali"]

for student in students:
  print(f"{student} is present.")

Output:

Naveed is present.
Noor is present.
Shahzad is present.
Ahmed is present.
Ali is present.

ye program ek real attendance checker nahi hai ye just
For Loop ki practice ky liye hai.

Note:

 1: Attendance Check:



While Loop ky zariye ek timer:

timer = 5

while timer > 0:
    print(f"Time remaining: {timer} seconds")
    timer -= 1

print("Time's up!")

Output:

Time remaining: 5 seconds  
Time remaining: 4 seconds  
Time remaining: 3 seconds  
Time remaining: 2 seconds  
Time remaining: 1 seconds  
Time's up!

ye timer abhi foran hi chl pry ga es ko thik sy chlany ky liye
time Module ko use kar ky time.sleep(1) loop me lgai gy to
ek proper Countdown Timer bny ga.

Note:

For Loop: Fixed iterations (loop over a list or range).
While Loop: Runs until a condition is false.

Dono loops ko samajhne se aap repetitive tasks easily
handle kar sakte hain!

Summary:

 2. Countdown Timer:

Modules ko detail me Lesson 10 me seekhy gy.

The full lesson is now available on the Needi Developer
YouTube channel.



Break, Continue, and Pass
Python me break, continue, aur pass special keywords
hain jo loops aur control flow ko modify karte hain. 
Ye keywords hume loops aur conditions ko zyada flexible
aur controlable banane ka option dete hain.

 1. Break Statement

Break ka use loop ko turant (immediately) terminate karne
ke liye hota hai. Jab break execute hota hai, loop ka
execution wahi khatam ho jata hai, chahe condition true
ho ya nahi.

Syntax:

for/while loop:
    if condition:
        break

 1: Break in a While Loop

count = 0

while count < 10:
    if count == 6:
        print("Loop stopped at count:", count)
        break
    print(count)
    count += 1

0  
1  
2  
3  
4  
5  
Loop stopped at count: 6

Output:



 2. Continue Statement

Continue ka use kisi specific iteration ko skip karne ke liye
hota hai, lekin loop ke baaki iterations chalte hain. Ye
turant loop ke agle iteration par chala jata hai.

Syntax:

for/while loop:
    if condition:
        continue

 2: Break in a For Loop

for num in range(1, 10):
    if num == 5:
        print("Stopping the loop!")
        break
    print(num)

1  
2  
3  
4  
Stopping the loop!

Output:

1  
2  
Skipping number 3  
4  
5

Output:

 1: Continue in a For Loop

for num in range(1, 6):
    if num == 3:
        print("Skipping number 3")
        continue
    print(num)



 2: Continue in a While Loop

count = 0

while count < 5:
    count += 1
    if count == 3:
        print("Skipping count:", count)
        continue
    print("Count:", count)

Count: 1  
Count: 2  
Skipping count: 3  
Count: 4  
Count: 5

Output:

 3. Pass Statement

Pass ka use tab hota hai jab hume loop ya block of code
likhna ho, lekin temporarily usse blank chodna ho. Ye kuch
nahi karta, sirf syntax error avoid karta hai.

Syntax:

if condition:
    pass  # Placeholder for future code

  2: Pass in an Empty Function

def my_function():
    pass  # Function logic will be added later



 1: Pass in a Loop

 Comparison Between Break, Continue, and Pass

Keyword Purpose Effect

Break Loop ko turant
stop kar deta hai

Loop se bahar nikal jata
hai

Continue Current iteration
ko skip karta hai

Agli iteration par jump
karta hai

Pass Placeholder, kuch
nahi karta

Code ko temporarily blank
chhodta hai

for num in range(1, 6):
    if num == 3:
        pass  # Placeholder for future code
    print(num)

1  
2  
3  
4  
5

Output:

Break: Loop ko terminate karta hai.
Continue: Current iteration ko skip karta hai.
Pass: Placeholder, kuch nahi karta.

Inka use karke loops aur conditions ko efficiently manage
kar sakte hain!

Summary:

The full lesson is now available on the Needi Developer
YouTube channel.



Shorthand If-Else
Python me shorthand if-else ka use tab hota hai jab aap
simple conditions ko ek hi line me likhna chahte ho. Ye
code ko concise aur readable banata hai.

 1. Shorthand If

Agar ek hi condition hai aur uspar ek hi statement likhna
ho, to shorthand if ka use kar sakte hain.

Syntax:

statement1 if condition else statement2

 1: Simple Shorthand If

age = 18
if age >= 18: print("You are eligible to vote.")

You are eligible to vote.

Output:

 2. Shorthand If-Else

Agar if-else ka use ek hi line me karna ho, to shorthand
format ka use karte hain.

Syntax:

value_if_true if condition else value_if_false

 2: Shorthand If-Else

age = 16
status = "Adult" if age >= 18 else "Minor"
print(status)

Minor

Output:



 3. Nested Shorthand If-Else

Agar multiple conditions hain, to nested shorthand if-else
ka use kar sakte hain.

 3: Nested Shorthand If-Else

marks = 85
result = "Excellent" if marks > 80 else "Good" if marks > 50 else "Needs Improvement"
print(result)

Excellent

Output:

Shorthand if-else ka use karke aapka code short aur clean
ban jata hai. Ye sirf tab use karein jab conditions simple ho

Summary:

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

 ATM Simulation

Objective: Simulate a simple ATM machine with these
features:

Show a menu with the following options:1.
Check Balancei.
Withdraw Moneyii.
Exitiii.

Use if-elif-else to handle the options.2.
Use a while loop to keep the program running until the
user selects "Exit."

3.

Implement the following logic:4.
Allow withdrawal only if the balance is sufficient.
Use shorthand if-else to update the balance.
Exit the loop when the user chooses "Exit."



Lesson 5: Functions

Defining Functions and Return
Python mein functions aise code blocks hote hain jo ek
specific task perform karte hain. Functions ka use code ko
organize karne aur repeat karne se bachne ke liye hota
hai. Isse code zyada readable aur maintainable ban jata
hai.

 Function Kya Hai?

Function ek block of code hota hai jo kisi specific kaam ko
perform karta hai. Jab bhi zarurat ho, aap us function ko
call kar sakte hain. Functions input le sakte hain, us input
ko process kar sakte hain, aur result return kar sakte hain.

 Function Ko Define Kaise Karte Hain?

Python mein function define karne ke liye def keyword ka
use hota hai, aur phir function ka naam aur parentheses ()
likhna padta hai.

Syntax:

def function_name(parameters):
    # Code ka block
    return result  # Optional

 1: Simple Function

Hello, welcome to Python Knight!

Output:

def greet():
    print("Hello, welcome to Python Knight!")
    
greet()  # Function ko call kar rahe hain



 Function Mein Parameters

Aap function ko information dene ke liye parameters ka
use kar sakte hain.

 2: Function with Parameters

Hello, Needi Developer!

Output:

def greet_user(name):
    print(f"Hello, {name}!")
    
greet_user("Needi Developer")  

 Return Statement

return statement ka use function ke result ko wapas
bhejne ke liye hota hai. Jab aap kisi calculation ya
processing ke baad result ko function se bahar bhejna
chahte hain, tab aap return use karte hain.

 3: Function with Return

Sum: 8

Output:

def add(a, b):
    result = a + b
    return result

# Function ko call karke result print karte hain
sum_result = add(5, 3)
print("Sum:", sum_result)

 Why Use return?

Agar aapko function ke andar ki calculation ya result ko
kisi aur part of program mein use karna ho, to return
statement ke through wo value function ke bahar bhej
sakte hain.



Summary:
Function ko def keyword se define karte hain.
Parameters function ko values dene ke liye use kiye
jaate hain.
Return statement function ka result wapas bhejne ke
liye hota hai.

Is tarah se functions aapko apne code ko modular, clean,
aur reusable banane mein madad karte hain.

The full lesson is now available on the Needi Developer
YouTube channel.



Function Arguments
Python mein functions ke saath different types ke
arguments use kiye ja sakte hain. In arguments ko hum
default arguments, *args, aur **kwargs ke naam se
jaane hain. Ye aapke function ko zyada flexible aur
dynamic bana dete hain.

 1. Default Arguments

Agar aap function define karte waqt kisi argument ko ek
default value de dete hain, to agar user wo argument pass
nahi kare, to wo default value use hoti hai.
Syntax:

def function_name(param1=value1, param2=value2):
    # Function body

Example:

def greet(name="User"):
    print(f"Hello, {name}!")

greet("Naveed")   # Output: Hello, Naveed!
greet()        # Output: Hello, User!

Explanation:
Yahan, agar name argument ko user pass nahi karta to
default value "User" use hoti hai.

 2. *args (Non-Keyword Variable Length Arguments)

*args ka use hum tab karte hain jab hum function ko
variable number of arguments dena chahte hain. args ek
tuple hota hai jo user ke diye hue extra arguments ko store
karta hai.
Syntax:

def function_name(*args):
    # Function body



Example:

def add_numbers(*args):
    total = 0
    for num in args:
        total += num
    return total

print(add_numbers(1, 2, 3))    # Output: 6
print(add_numbers(10, 20, 30, 40))  # Output: 100

Explanation:
*args allow karta hai multiple numbers ko function mein
pass karne ko. Function ke andar hum un sabhi numbers
ko sum kar ke return kar rahe hain.

 3. **kwargs (Keyword Variable Length Arguments)

**kwargs ka use tab hota hai jab hume function ko
multiple keyword arguments (key-value pairs) dene hote
hain. kwargs ek dictionary hota hai jo key-value pairs ko
store karta hai.
Syntax:

def function_name(**kwargs):
    # Function body

Example:

def print_info(**kwargs):
    for key, value in kwargs.items():
        print(f"{key}: {value}")

print_info(name="Ali", age=25, city="Karachi")

Explanation:
**kwargs allow karta hai aapko multiple keyword
arguments ko handle karne mein. Function ke andar hum
in key-value pairs ko print kar rahe hain.

Output:

name: Ali
age: 25
city: Karachi



 Combining Default, *args, and **kwargs

Aap ek hi function mein default arguments, *args, aur
**kwargs ko combine kar sakte hain. Lekin, default
arguments ko hamesha sabse aakhri mein rakhna hota
hai.

Example:

def student_info(name, age=18, *subjects, **marks):
    print(f"Name: {name}")
    print(f"Age: {age}")
    print(f"Subjects: {subjects}")
    print(f"Marks: {marks}")

# Function ko call karte hain
student_info("Ali", 20, "Math", "Science", Math=85, Science=90)

Explanation:
name ek required argument hai.
age ek default argument hai, agar value pass nahi hoti
to 18 use hota.
*subjects multiple subjects ko accept karta hai.
**marks multiple subjects ke marks ko key-value pairs
ke roop mein accept karta hai.

Output:

Name: Ali
Age: 20
Subjects: ('Math', 'Science')
Marks: {'Math': 85, 'Science': 90}

Summary:
Default Arguments: Function ko default values dena
agar user kisi argument ko pass nahi karta.
*args: Function ko variable number of non-keyword
arguments dena. Ye arguments tuple ke form mein
hote hain.
**kwargs: Function ko variable number of keyword
arguments dena. Ye arguments dictionary ke form
mein hote hain.

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

 Prime Number Check 

Write a Python function to check whether a given number
is prime or not. A prime number is a number greater than 1
that has no divisors other than 1 and itself.
Write a function is_prime() that:

Accepts an integer as input.1.
Returns True if the number is prime.2.
Returns False if the number is not prime.3.

Example Input and Output:

is_prime(5)  # Output: True (5 is a prime number)
is_prime(10)  # Output: False (10 is not a prime number)



Lesson 6: Data Structures

Lists
Lists Python mein ek data structure hain jo multiple items
ko ek variable mein store karne ki facility dete hain. Lists
kaafi flexible hoti hain aur inko hum asaan tareeqe se
modify kar sakte hain. 
Aayein basics samajhte hain:

 Basics of Lists

Lists ko square brackets [] ke andar banaya jata hai.
Har item ko comma , se separate karte hain.
Lists mein koi bhi data type store ho sakta hai:
numbers, strings, aur even lists khud bhi.
Lists mutable hoti hain, yani aap unke elements ko
badal sakte hain.

Examples:

# List banani
numbers = [1, 2, 3, 4, 5]
fruits = ["apple", "banana", "cherry"]
mixed = [1, "hello", 3.5, True]

# List ko print karna
print(numbers)  # [1, 2, 3, 4, 5]
print(fruits)   # ['apple', 'banana', 'cherry']
print(mixed)    # [1, 'hello', 3.5, True]

 Indexing in Lists

Lists ke har element ka ek index hota hai, jo 0 se start
hota hai.
Negative indexing se hum list ke end se elements ko
access karte hain.



Examples:

fruits = ["apple", "banana", "cherry"]

# Positive indexing
print(fruits[0])  # 'apple' (pehla element)
print(fruits[1])  # 'banana' (dusra element)

# Negative indexing
print(fruits[-1])  # 'cherry' (last element)
print(fruits[-2])  # 'banana' (dusra last element)

 Slicing in Lists

Slicing ka matlab hai list ke kisi part ko access karna.
Syntax: list[start:end:step]

start: Jahaan se slicing shuru karni hai (inclusive).
end: Jahaan tak slicing karni hai (exclusive).
step: Kitne gap ke saath elements ko pick karna hai.

Examples:

numbers = [10, 20, 30, 40, 50, 60]

# Simple slicing
print(numbers[1:4])  # [20, 30, 40] (index 1 se 3 tak)
print(numbers[:3])   # [10, 20, 30] (start missing => 0 se start)
print(numbers[2:])   # [30, 40, 50, 60] (end missing => last tak)

# Step ke saath slicing
print(numbers[0:6:2])  # [10, 30, 50] (har 2nd element pick karo)
print(numbers[::-1])   # [60, 50, 40, 30, 20, 10] (list reverse karna)

 Methods in Lists

Python mein lists ke saath kaafi useful built-in methods
hote hain jo humein unhe manipulate karne ka tareeqa
dete hain.



 Common List Methods:

append(): Ek naye element ko list ke end mein add
karta hai.

1.

extend(): Ek list ke elements ko doosri list mein add
karta hai.

2.

insert(): Kisi specific position par element ko add karta
hai.

3.

remove(): Specific element ko remove karta hai.4.
pop(): Last element ko remove karta hai aur return
karta hai.

5.

sort(): List ke elements ko ascending order mein
arrange karta hai.

6.

reverse(): List ke elements ko reverse karta hai.7.

Examples of Methods:

fruits = ["apple", "banana", "cherry"]

# append
fruits.append("orange")
print(fruits)  # ['apple', 'banana', 'cherry', 'orange']

# insert
fruits.insert(1, "grape")
print(fruits)  # ['apple', 'grape', 'banana', 'cherry', 'orange']

# remove
fruits.remove("banana")
print(fruits)  # ['apple', 'grape', 'cherry', 'orange']

# pop
last_item = fruits.pop()
print(last_item)  # 'orange'
print(fruits)     # ['apple', 'grape', 'cherry']

# reverse
fruits.reverse()
print(fruits)  # ['cherry', 'grape', 'apple']

The full lesson is now available on the Needi Developer
YouTube channel.



Tuples

 What are Tuples?

Tuples Python me ek data structure hain jo lists ki tarah
lagte hain, lekin ek major difference hota hai: Tuples
immutable hote hain, yani once aap tuple create kar lete
hain, uske values ko change nahi kar sakte. Tuples un data
ko store karne ke liye use hote hain jo constant rehna
chahiye.

Tuples ko round brackets () ka use karke banaya jata
hai.
Ye kisi bhi type ka data hold kar sakte hain (int, string,
float, etc.).
Tuples mixed data types bhi store kar sakte hain.

 How to Create Tuples

# Ek tuple create karna
fruit_tuple = ("apple", "banana", "cherry")

# Mixed data types ka tuple
mixed_tuple = (1, "hello", 3.14)

# Empty tuple
empty_tuple = ()

# Ek element ka tuple (comma zaruri hai)
single_element = (5,)
print(type(single_element))  # Output: <class 'tuple'>

 Why Are Tuples Immutable?

Immutable ka matlab hai ki aap tuple ko banane ke baad
uska data change, add, ya remove nahi kar sakte. Ye
useful hota hai jab aapko apna data accidentally modify
hone se bachana ho.



Example: Immutability

fruit_tuple = ("apple", "banana", "cherry")

# Ye error dega
fruit_tuple[1] = "orange"  
# TypeError: 'tuple' object does not support item assignment

 Accessing Tuple Elements

Tuple ke elements ko indexing ka use karke access kiya ja
sakta hai, bilkul lists ki tarah.
Example: Immutability

fruit_tuple = ("apple", "banana", "cherry")

# Elements ko access karna
print(fruit_tuple[0])  # Output: apple
print(fruit_tuple[-1])  # Output: cherry

 Use Case of Tuple

 1. Fixed Data:

Jab aapko data ko change nahi karna ho, jaise:
Week ke days: days = ("Monday", "Tuesday",
"Wednesday")
RGB color codes: colors = (255, 0, 0)

 2. Dictionary Keys:

Tuples ko dictionary ke keys ke roop me use kar sakte hain
(lists ko nahi).

coordinates = {(10, 20): "Point A", (30, 40): "Point B"}
print(coordinates[(10, 20)])  # Output: Point A



 3. Multiple Values Return Karna:

Functions me tuples ka use multiple values return karne ke
liye hota hai.

def get_coordinates():
    return (10, 20)

x, y = get_coordinates()
print(x, y)  # Output: 10 20

 Tuples ke Advantages

Lists se fast hote hain kyunki immutable hain.
Data ko safe rakhte hain accidental modification se.
Jahan immutability ki zarurat ho, wahan use hote hain
(dictionary keys).

The full lesson is now available on the Needi Developer
YouTube channel.



Sets
Python me sets ek special data structure hain jo
unordered aur unique elements ko store karte hain. Sets
real-life examples jese classroom ke students ya fruits ki
list ko handle karne ke liye use hote hain, jahan duplicates
ko ignore karna zaroori hai.

 Set Basics

Sets ko curly brackets {} ya set() function ka use karke
banaya jata hai.
Sets unordered hain, yani elements ka order important
nahi hota.
Sets ke andar duplicates nahi ho sakte.

Example: Set Creation

# Ek set create karna
fruits = {"apple", "banana", "cherry", "apple"}  
print(fruits)  
# Output: {'banana', 'cherry', 'apple'} (duplicates remove ho jayenge)
# Empty set
empty_set = set()  # {} ka matlab dictionary hota hai, na ki set

 Set Operations

Sets ko use karke hum mathematical operations kar sakte
hain, jaise union, intersection, difference, symmetric
difference, etc.



 1. Union

Union ka matlab hai do sets ke sabhi unique elements
ko combine karna.
Use the | operator ya union() method.

A = {1, 2, 3}
B = {3, 4, 5}

# Union
result = A | B
print(result)  # Output: {1, 2, 3, 4, 5}

# Using method
result = A.union(B)
print(result)  # Output: {1, 2, 3, 4, 5}

 2. Intersection

Intersection ka matlab hai do sets ke common
elements.
Use the & operator ya intersection() method.

A = {1, 2, 3}
B = {3, 4, 5}

# Intersection
result = A & B
print(result)  # Output: {3}

# Using method
result = A.intersection(B)
print(result)  # Output: {3}



 3. Difference

Difference ka matlab hai ek set me jo elements hain,
lekin doosre set me nahi.
Use the - operator ya difference() method.

A = {1, 2, 3}
B = {3, 4, 5}

# Difference (A - B)
result = A - B
print(result)  # Output: {1, 2}

# Using method
result = A.difference(B)
print(result)  # Output: {1, 2}

 4. Symmetric Difference

Symmetric Difference ka matlab hai do sets ke unique
elements, jo sirf ek set me hain, lekin dono me nahi.
Use the ^ operator ya symmetric_difference()
method.

A = {1, 2, 3}
B = {3, 4, 5}

# Symmetric Difference
result = A ^ B
print(result)  # Output: {1, 2, 4, 5}

# Using method
result = A.symmetric_difference(B)
print(result)  # Output: {1, 2, 4, 5}



 Set Methods

Sets me kaafi useful methods hote hain jo humari life easy
banate hain.

Common Methods

 1. add():

Ek naya element set me add karta hai.

fruits = {"apple", "banana"}
fruits.add("cherry")
print(fruits)  # Output: {'apple', 'banana', 'cherry'}

 2. remove():

Ek specific element ko remove karta hai (error deta hai
agar element na ho).

fruits = {"apple", "banana"}
fruits.remove("banana")
print(fruits)  # Output: {'apple'}

 3. discard():

Ek element ko remove karta hai (error nahi deta agar
element na ho).

fruits = {"apple", "banana"}
fruits.discard("orange")
print(fruits)  # Output: {'apple', 'banana'}

 4. pop():

 Randomly ek element ko remove karta hai (kyunki sets
unordered hote hain).

fruits = {"apple", "banana", "cherry"}
fruits.pop()
print(fruits)  # Output: {'banana', 'cherry'} (order random hoga)



 5. clear():

Set ko completely empty karta hai.

fruits = {"apple", "banana", "cherry"}
fruits.clear()
print(fruits)  # Output: set()

 6. copy():

Ek naya set banata hai jo existing set ka copy hota hai.

fruits = {"apple", "banana"}
new_fruits = fruits.copy()
print(new_fruits)  # Output: {'apple', 'banana'}

 Why Use Sets?

Jab duplicates ko avoid karna ho.
Jab fast membership testing chahiye (element exists in
set or not).
Jab mathematical set operations jese union ya
intersection chahiye.

Sets simple aur efficient hain for unique data ke saath
kaam karna!

The full lesson is now available on the Needi Developer
YouTube channel.



Dictionaries
Dictionaries Python me ek unordered, mutable, aur
indexed data structure hain jo key-value pairs ko store
karte hain. Yeh ek bahut powerful tool hai data ko logically
organize karne ke liye, jese ek contact list ya students ki
records.

 Dictionaries Basics

Dictionary ko curly brackets {} ka use karke banate
hain.
Keys unique hote hain aur values duplicate ho sakti
hain.
Keys immutable hote hain (string, int, tuple), aur values
kuch bhi ho sakti hain (string, list, another dictionary).

Example: Set Creation

# Basic dictionary
student = {
    "name": "Naveed",
    "age": 20,
    "grade": "A"
}
print(student)  # Output: {'name': 'Naveed', 'age': 20, 'grade': 'A'}

 Accessing Values in Dictionary

 1. Using Keys

print(student["name"])  # Output: Naveed

 2. Using get() Method

get() ka fayda hai agar key exist na kare, to error nahi
hota, instead default value return hoti hai.

print(student.get("age"))  # Output: 20
print(student.get("address", "Not Available")) 
 # Output: Not Available



 Adding and Updating Values

 1. Adding New Key-Value Pair

student["address"] = "Gujranwala"
print(student)  
# Output: {'name': 'Naveed', 'age': 20, 'grade': 'A', 'address':
'Gujranwala'}

 2. Updating Existing Value

student["age"] = 21
print(student)  
# Output: {'name': 'Naveed', 'age': 21, 'grade': 'A', 'address':
'Gujranwala'}

 Removing Elements

 1. Using pop()

student.pop("grade")
print(student)  
# Output: {'name': 'Naveed', 'age': 21, 'address': 'Gujranwala'}

Ek specific key-value pair ko remove karta hai.

 2. Using popitem()

student.popitem()
print(student)  
# Output: {'name': 'Naveed', 'age': 21'}

Randomly last inserted key-value pair ko remove karta
hai (Python 3.7+ me last element remove hota hai).

 3. Using del

del student["age"]
print(student)  # Output: {'name': 'Naveed'}

Kisi specific key ko delete karne ke liye.



 4. Using clear()

 Common Dictionary Methods

Method Description Example

keys() Returns all keys in dictionary student.keys() → dict_keys(['name', 'age'])

values() Returns all values in
dictionary

student.values() → dict_values(['Ali', 20])

items() Returns all key-value pairs as
tuples

student.items() → dict_items([('name', 'Ali')])

update() Adds or updates key-value
pairs

student.update({"grade": "A"})

copy() Creates a shallow copy of the
dictionary

new_student = student.copy()

student.clear()
print(student)  # Output: {}

Dictionary ko completely empty karne ke liye.

 Why Use Dictionaries?

Fast Lookups: Keys ki wajah se data ko quickly access
kar sakte hain.

1.

Structured Data: Real-world data ko logically organize
karne ke liye perfect hain.

2.

Flexible: Values me kuch bhi store kar sakte hain (list,
another dictionary).

3.

Dictionaries are powerful and versatile, aur aapko har
practical project me inka use milega!

The full lesson is now available on the Needi Developer
YouTube channel.



Enumerate and Zip Functions
Python ki enumerate() aur zip() functions bohot useful
hain, jo looping aur data ko combine karne ke tasks ko
simple aur effective banate hain.

 Enumerate Function

enumerate() ka use iterables (like lists, tuples, strings) ke
elements ke saath-saath unka index access karne ke liye
hota hai.
Syntax:

enumerate(iterable, start=0)

iterable: Koi bhi iterable object (list, tuple, string).
start: Optional. Ye specify karta hai index kis number se
shuru hoga (default is 0).

 1: Basic Usage

fruits = ["apple", "banana", "cherry"]

for index, fruit in enumerate(fruits):
    print(f"Index: {index}, Fruit: {fruit}")

Output:
Index: 0, Fruit: apple  
Index: 1, Fruit: banana  
Index: 2, Fruit: cherry

  2: Custom Start Index

fruits = ["apple", "banana", "cherry"]

for index, fruit in enumerate(fruits, start=1):
    print(f"Fruit {index}: {fruit}")

Output:
Fruit 1: apple  
Fruit 2: banana  
Fruit 3: cherry



 Zip Function

zip() ka use multiple iterables ko parallel combine karne
ke liye hota hai. Ye function tuples ka ek list banata hai,
jisme har tuple respective elements ko combine karta hai.

Syntax:

zip(iterable1, iterable2, ...)

 1: Basic Usage

names = ["Naveed", "Sara", "Fatima"]
scores = [90, 85, 88]

for name, score in zip(names, scores):
    print(f"{name} scored {score}")

Output:

Naveed scored 90  
Sara scored 85  
Fatima scored 88

 2: Zipping Unequal Lengths

colors = ["red", "blue"]
shapes = ["circle", "square", "triangle"]

for color, shape in zip(colors, shapes):
    print(f"{color} {shape}")

Output:

red circle  
blue square

Agar iterables ke lengths unequal hain, zip() shorter
iterable ke length tak hi combine karega.



 3: Unzipping

 Difference Between Enumerate and Zip

Feature enumerate() zip()

Purpose Provides index and value Combines multiple iterables

Input Single iterable Two or more iterables

Output Tuples with index and
value

Tuples with combined
elements

zipped = [("Naveed", 90), ("Sara", 85), ("Fatima", 88)]
names, scores = zip(*zipped)

print(names)  # ('Naveed', 'Sara', 'Fatima')
print(scores)  # (90, 85, 88)

Agar zipped object ko separate karna ho, to zip(*zipped)
ka use karte hain.

Summary:
enumerate() helps you get index and value from an
iterable.
zip() combines elements from multiple iterables into
tuples.

Dono functions looping ko zyada organized aur readable
banate hain.

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

 Data Structures Puzzle

Create a program that performs the following tasks:
You have two data structures:1.

A list of students:
 ["Ali", "Naveed", "Sara", "Zoya", "Ali", "Sara"]

A tuple of their marks: (85, 90, 78, 88, 85, 78)
Perform these operations:2.

Find unique students (remove duplicates).
Combine students and marks into a dictionary
where names are keys, and marks are values 

(for duplicate names, keep the latest mark).



Lesson 7: Error Handling

Introduction to Errors and Exceptions
Errors aur exceptions Python programming ka important
part hain. Ye humein apne code mein problems ko
samajhne aur handle karne mein madad karte hain.
Aayiye, inko asaan words mein samajhte hain.

 What Are Errors?

Errors wo problems hain jo code ko chalne nahi deti. Jab
Python ko kuch aisa mile jo samajhne ya chalane layak na
ho, to user ko python ki trf say error mita hai.

Types of Errors:

 1. Syntax Errors:

print("Hello  # Closing quote missing

Jab Python ke rules tod diye jaate hain.
Example:

SyntaxError: EOL while scanning string literal

Output:

 2. Runtime Errors:

result = 10 / 0  # Zero se divide karne ki koshish

Jab program chal raha hota hai aur tab issue hota hai.
Example:

ZeroDivisionError: division by zero

Output:



 What Are Exceptions?

Exceptions runtime errors hain jo program ko crash kiye
bina handle ki jaa sakti hain.

num = int(input("Enter a number: "))
print(f"You entered: {num}")
# Agar user number ki jagah text input karega, program crash
karega.

Example Without Exception Handling:

ValueError: invalid literal for int() with base 10

Output:

 Why Handle Exceptions?

Program ko crash hone se bachane ke liye.
User-friendly experience dene ke liye.
Unexpected situations ko handle karne ke liye.

The full lesson is now available on the Needi Developer
YouTube channel.



How to Handle Exceptions?
Python mein errors aur exceptions handle karne ke liye
try, except, aur finally blocks ka use hota hai. Ye blocks
program ko crash hone se bachate hain aur unexpected
errors ko properly handle karte hain. Aayiye, inko asaan
tarike se samajhte hain!

 try Block

try block wo code contain karta hai jo execute karna hai,
lekin usmein koi error aane ka chance ho sakta hai.

try:
    num = int(input("Enter a number: "))  # Risky code
    print(f"You entered: {num}")

Example:

Agar try block mein koi error hoti hai, to code except block
mein chala jata hai.

 except Block

except block tab execute hota hai jab try block mein koi
error occur hoti hai. Ye error handle karta hai aur user ko
friendly message provide karta hai.

try:
    num = int(input("Enter a number: "))  # User se number lena
    print(f"Result: {10 / num}")  # Division by user input
except ValueError:  # Agar user number na de (ValueError)
    print("Please enter a valid number.")
except ZeroDivisionError:  # Agar user 0 input kare
    print("You cannot divide by zero!")

Example:

User enters "abc":

Output Scenarios:

Please enter a valid number.



User enters "0":

You cannot divide by zero!

 finally Block

finally block hamesha execute hota hai, chahe koi error
aaye ya nahi. Ye clean-up tasks ke liye use hota hai, jaise
file close karna, database connection terminate karna, etc.

try:
    file = open("data.txt", "r")  # File ko open karna
    content = file.read()
    print(content)
except FileNotFoundError:  # Agar file exist nahi karti
    print("File not found!")
finally:
    print("Closing the file.")  # Hamesha execute hoga
    file.close()  # File close karna

Example:

Output:
Agar file mil jaye:

(File content displayed)
Closing the file.

Agar file na mile:

File not found!
Closing the file.

 Multiple except Block

Aap ek try block ke liye multiple except blocks use kar
sakte ho. Ye alag-alag errors ko handle karte hain.



try:
    num1 = int(input("Enter a number: "))
    num2 = int(input("Enter another number: "))
    result = num1 / num2
    print(f"Result: {result}")
except ValueError:  # Agar invalid input ho
    print("Please enter valid numbers.")
except ZeroDivisionError:  # Agar zero se divide ho
    print("Cannot divide by zero.")
finally:
    print("Thank you for using the program.")

Example:

Output Scenarios:
User enters valid numbers:

Result: (calculated result)
Thank you for using the program.

User enters invalid numbers:

Please enter valid numbers.
Thank you for using the program.

User divides by zero:

Cannot divide by zero.
Thank you for using the program.

Summary:
try block: Risky code jo error raise kar sakta hai.1.
except block: Error ko handle karta hai aur program ko
crash hone se bachata hai.

2.

finally block: Clean-up tasks ko execute karta hai aur
hamesha run hota hai.

3.

By using try, except, and finally, aap apne Python
programs ko error-proof aur user-friendly bana sakte ho.

The full lesson is now available on the Needi Developer
YouTube channel.



Raising Custom Errors 
Python mein aap apne custom errors raise kar sakte ho
jab aapko lagta hai ki koi specific condition galat hai. Ye
feature program ko robust aur readable banata hai, kyunki
aap apne errors ko identify kar sakte ho aur proper error
messages provide kar sakte ho.

 Why Raise Custom Errors?

Jab koi specific logic fail ho.
User ko meaningful error message dena ho.
Program ko controlled way mein stop karna ho.

raise ExceptionType("Custom error message")

Example:

 Common Use Case

Imagine karo ek function hai jo kisi user ki age accept
karta hai. Lekin, agar age 0 se chhoti ya 150 se zyada ho, to
wo invalid hai.

 1: Division by Zero Custom Error

def divide(a, b):
    if b == 0:
        raise ZeroDivisionError("You cannot divide by zero!")
    return a / b

try:
    result = divide(10, 0)
except ZeroDivisionError as e:
    print(f"Error: {e}")

Error: You cannot divide by zero!

Output:



 2: Raising Custom Errors

def check_age(age):
    if age < 0:
        raise ValueError("Age cannot be negative!")  # Custom error
    elif age > 150:
        raise ValueError("Age cannot be more than 150!")  
        # Custom error
    else:
        print(f"Your age is valid: {age}")

# Test cases
try:
    check_age(-5)  # Invalid age
except ValueError as e:
    print(f"Error: {e}")

try:
    check_age(200)  # Invalid age
except ValueError as e:
    print(f"Error: {e}")

check_age(25)  # Valid age

Example:

Error: Age cannot be negative!
Error: Age cannot be more than 150!
Your age is valid: 25

Output:

 3: Custom Class for Errors

Python mein aap apne custom error classes bhi bana
sakte ho by inheriting from the Exception class.



class NegativeNumberError(Exception):
    """Raised when a number is negative"""
    pass

def check_number(num):
    if num < 0:
        raise NegativeNumberError("Number cannot be negative!")
    print(f"Valid number: {num}")

# Test case
try:
    check_number(-10)
except NegativeNumberError as e:
    print(f"Custom Error: {e}")

Custom Error: Number cannot be negative!

Output:

Example:

 Using assert for Error Raising

Python mein assert bhi use hota hai specific conditions ko
test karne ke liye. Agar condition fail ho, to error raise hoti
hai.

def check_positive(num):
    assert num > 0, "Number must be positive!"
    print(f"Valid number: {num}")

# Test cases
check_positive(5)  # Valid
check_positive(-3)  # Raises AssertionError

Example:

Valid number: 5
AssertionError: Number must be positive!

Output:



 Key Points to Remember:

Use raise to manually trigger an error.1.
Always provide meaningful error messages.2.
Create custom exceptions by inheriting from the
Exception class.

3.

Combine try-except blocks with custom errors for
clean code.

4.

Custom errors aapko program ko predictable aur user-
friendly banane mein help karte hain.

The full lesson is now available on the Needi Developer
YouTube channel.



 Debugging Basics
Debugging ka matlab hota hai apne code ki errors ko
dhoondhna aur fix karna. Python debugging ke liye kai
tareeqe provide karta hai, jisme se print() debugging aur
pdb module sabse common aur effective hain.

 1. print() Debugging

Yeh debugging ka sabse simple aur common tareeqa hai.
Aap code ke different parts mein print() statements add
karte ho taaki variables ki values aur flow ka pata chal
sake.

Advantages:
Simple aur quick.
Beginners ke liye best.

def calculate_sum(a, b):
    print(f"a: {a}, b: {b}")  # Debugging
    result = a + b
    print(f"result: {result}")  # Debugging
    return result

# Calling the function
sum_result = calculate_sum(5, 3)
print(f"Sum is: {sum_result}")

Example:

a: 5, b: 3
result: 8
Sum is: 8

Output:

 When to Use print() Debugging?

Jab aapko variable ki value check karni ho.
Flow of execution samajhna ho.
Small programs mein.



 Limitations of print() Debugging

 2. pdb (Python Debugger)

 How to Use pdb?

Command Description

n Next line execute karne ke liye.

c Continue program execution.

q Quit the debugger.

p Variable ki value print karne ke liye.

l Current line aur uske aas-paas ka code dekhne ke liye.

Large programs mein clutter create kar deta hai.
Temporary fixes ke liye theek hai, lekin permanent
debugging ke liye nahi.

Python ka built-in pdb module ek interactive debugging
tool hai jo aapko code ko line-by-line run karke errors
dhoondhne deta hai.

Code mein import pdb likhein.1.
Debugging karne ke liye pdb.set_trace() ka use karein.2.
Program execution wahin stop hota hai jahan
pdb.set_trace() lagaya ho.

3.

Interactive commands ka use karke debugging karein.4.
Example:

def calculate_product(a, b):
    import pdb; pdb.set_trace()  # Debugging point
    result = a * b
    return result

# Calling the function
product = calculate_product(4, 5)
print(f"Product is: {product}")

Common pdb Commands:



 pdb Example with Commands

def divide_numbers(a, b):
    import pdb; pdb.set_trace()  # Start debugging
    result = a / b
    return result

# Call the function
result = divide_numbers(10, 2)
print(f"Result: {result}")

Output:

(Pdb) p a
10
(Pdb) p b
2
(Pdb) n
(Pdb) p result
5.0
(Pdb) c
Result: 5.0

 3. Using Breakpoints in VS Code

Agar aap VS Code use kar rahe hain, to breakpoints
debugging ke liye aur bhi easy ho jaati hai.

Set a Breakpoint: Code ke kisi line pe click karke
breakpoint lagao.

1.

Run in Debug Mode: "Run and Debug" option choose
karo.

2.

Inspect Variables: Execution stop hoga aur aap
variables inspect kar sakte ho.

3.

 When to Use pdb?

Jab program bada ho aur print() se debugging
mushkil lage.
Jab aapko line-by-line execution inspect karna ho.



Summary:
print() Debugging:1.

Simple aur quick.
Best for small issues.

pdb Debugger:2.
Advanced debugging tool.
Large programs ke liye best.

Don’t just fix errors—learn from them! Debugging is not just
a skill, it's an art.



Lesson 8: File Handling

Reading and Writing Files

 Why File Handling is Important?

 Opening a File

Mode Description

r Read mode (default).

w Write mode (overwrites file).

a Append mode (add to the file).

x Create a new file.

File handling ka matlab hai files ko read, write, aur
manage karna. Python ek powerful system provide karta
hai files ke saath kaam karne ke liye. Ye concept real-world
tasks jese logs save karna, data read karna ya report
generate karna ke liye kaafi useful hai.

Data store karne ke liye.
Logs maintain karne ke liye.
Configuration files manage karne ke liye.

Python mein files ko open karne ke liye open() function use
hota hai.
Syntax:

file = open("filename", "mode")

Mode:



 Reading a File

File ko read karne ke liye open() function ke saath r mode
use hota hai.
Example:

# Writing to a file
file = open("example.txt", "w")
file.write("Hello, this is a new line!\n")  # Overwrites the file
file.write("Python makes file handling easy!\n")
file.close()

Append Mode Example:

# Appending to a file
file = open("example.txt", "a")
file.write("This line is added at the end.\n")
file.close()

 Reading and Writing Together

r+ mode allow karta hai ek hi file ko read aur write karne ke
liye.
Example:

file = open("example.txt", "r+")
content = file.read()
print("Current content:", content)
file.write("\nAdding this line after reading!")
file.close()

 Using the with Statement

Python mein with statement ka use file ko automatically
close karne ke liye hota hai.
Example:

with open("example.txt", "r") as file:
    content = file.read()
    print(content)  # No need to manually close



 Common Errors in File Handling

Jab file exist nahi karti:

 1. File Not Found Error:

file = open("nonexistent.txt", "r")  # Will raise an error

Example:

Fix: Use try-except ya x mode to create the file.

Jab file ke liye access deny ho.

 2. Permission Error:

file = open("protected_file.txt", "w")  # May raise an error

Example:

Conclusion:
File handling ka basic concept samajhna zaroori hai.1.
Use read(), write(), append() for basic operations.2.
Prefer with open() for safer file handling.3.
Use file handling for real-world tasks like data storage,
logging, and report generation.

4.

File handling is an essential skill for every Python
developer!

The full lesson is now available on the Needi Developer
YouTube channel.



Important Methods in File Handling
File handling mein read(), readlines(), aur write()
methods kaafi important hain. Ye methods file se data
read karne aur write karne ke liye use hote hain. Let’s
understand these methods step by step in an easy way.

 1. read() Method

read() method pura file ka content ek string ke form mein
return karta hai.
Example:

with open("example.txt", "r") as file:
    content = file.read()  # Reads the entire file content
    print(content)

When to Use:
Jab file ka sara data ek saath read karna ho.
Best for small files.

Output:

Hello, Python Knights!
Welcome to Python File Handling.

If the file contains:

Output will be:

Hello, Python Knights!
Welcome to Python File Handling.

 2. readlines() Method

readlines() method file ki har line ko ek list ke andar store
karta hai.
Example:

with open("example.txt", "r") as file:
     lines = file.readlines() # Reads all lines into a list
     print(lines)



Output:

Hello, Python Knights!
Welcome to Python File Handling.

If the file contains:

Output will be:

['Hello, Python Knights!\n', 'Welcome to Python File Handling.\n']

Iterating Through Lines:

with open("example.txt", "r") as file:
    lines = file.readlines()
    for line in lines:
        print(line.strip())  
# Removes extra spaces or newline characters

 3. write() Method

write() method file mein data likhne ke liye use hota hai.
Agar file already exist karti hai, toh content overwrite ho
jata hai.
Example:

with open("example.txt", "w") as file:
    file.write("This is a new file content.\n")
    file.write("File handling is easy in Python!")

When to Use:
Jab aapko file ki lines ko alag-alag process karna ho.
Useful for looping through lines.

Output in File:

This is a new file content.
File handling is easy in Python!

When to Use:
Jab file mein naya content likhna ho.
Note: Write mode purane content ko delete kar deta hai



 Appending Content Using write()

 Comparison of Methods

Method Description Best Use Case

read() Reads entire file as a string. Small files.

readlines() Reads all lines into a list. Line-by-line processing.

write() Writes content to a file
(overwrites). New files or overwriting.

Agar aapko existing file mein data add karna ho, toh a
mode ka use karen.
Example:

with open("example.txt", "a") as file:
    file.write("\nAppending a new line to the file.")

Output in File:

This is a new file content.
File handling is easy in Python!
Appending a new line to the file.

Conclusion:

Use read() to get all data at once.
Use readlines() to process file line-by-line.
Use write() to save data into a file.

In Python, file handling is both simple and powerful,
making it easy to work with text data in real-world
applications.

The full lesson is now available on the Needi Developer
YouTube channel.



Understanding seek() and tell()
Functions in File Handling 

In Python, seek() aur tell() functions ka use file ke andar
pointer ko control karne ke liye hota hai. Yeh functions tab
kaam aate hain jab hume file ke specific part ko read ya
write karna hota hai.

 What is File Pointer?

Jab hum ek file open karte hain, file pointer ek cursor ki
tarah hota hai jo yeh batata hai ki agla read ya write
operation file ke kis position par hoga. By default, file
pointer file ke start me hota hai.

 seek() Function

seek() ka use file pointer ko kisi specific position par move
karne ke liye hota hai.
Syntax:

file.seek(offset, whence)

offset: Pointer ko kitne bytes move karna hai.
whence: Reference point define karta hai:

0 (default): File ke start se count karna.
1: Current pointer position se count karna.
2: File ke end se count karna.

 Pointer ko Move Karna

with open("example.txt", "r") as file:
    file.seek(5)  # Pointer ko 5th byte par move karo
    content = file.read()  # 5th byte ke baad read karo
    print(content)

Example:



 Last 5 Bytes Read Karna

Key Differences:

Aspect First Code (rb) Second Code (r)

Mode Binary Mode (rb) Text Mode (r)

Data Type Bytes String

seek() Behavior Accurate Byte-Level
Positioning

May Fail (due to line-ending
handling)

Encoding Requires .decode('utf-8')
explicitly

Implicitly handled by Python

Use Case Binary files, precise
positioning

Text files with normal reading

, Python Knights!

Output hoga:

with open("example.txt", "rb") as file:
  file.seek(-5, 2) # Move 5 bytes before the end of the file
  content = file.read()
  print(content.decode('utf-8')) 
# Decode the binary content to string

Example:

ghts!

Output hoga:

Es example me rb es liye use kiya gaya kyu kay r file ko text
mode me kholta hai. Text mode me seek() function ka
behavior unreliable ho jata hai, kyunki text files line endings
ko normalize karte hain (\n vs \r\n), jo byte-level
positioning ko bigaad sakta hai.
Es liye seek(-5, 2) kaam nahi karega agar text mode hai,
kyunki yeh binary mode ke liye design hua hai.

Hello, Python Knights!

Agar example.txt file me yeh content hai:



 tell() Function

tell() function current file pointer ki position batata hai (in
bytes).
Syntax:

file.tell()

 Pointer Position Check Karna

with open("example.txt", "r") as file:
    print(f"Initial position: {file.tell()}")
    file.read(6)  # Pehle 6 bytes read karo
    print(f"Position after reading 6 bytes: {file.tell()}")

Initial position: 0
Position after reading 6 bytes: 6

Output:

 how to use together seek() and tell() function

with open("example.txt", "r") as file:
    file.seek(7)  # Pointer ko 7th byte par move karo
    print(f"Pointer position: {file.tell()}")
    content = file.read(5)  # Agle 5 bytes read karo
    print(f"Content read: {content}")
    print(f"Pointer ab hai: {file.tell()}")

 Key Points to Remember:

seek() ka use file pointer ko move karne ke liye hota hai.1.
tell() se current pointer ki position pata chalti hai.2.
Default whence value 0 hoti hai, jo file ke start ko refer
karta hai.

3.

Pointer ko file ke data se aage le jaane par koi error nahi
hoga, but content read nahi hoga.

4.

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

 File-Based To-Do List Program

Ek simple program banaye jisme user apne tasks ko add,
view, aur delete kar sakta hai. Ye tasks file mein save
honge, taki program band hone ke baad bhi data safe
rahe.

Program user ko menu options de:
Add a new task: Naya task add kare.
View all tasks: Saare tasks dikhaye.
Delete a task by number: Task number ke zariye
delete kare.
Exit the program: Program ko band kare.

File Handling:
Tasks ek file (todo.txt) mein store kare.
Jab program shuru ho, tab file se tasks read kare.
Jab user koi action kare (add ya delete), tab file ko
update kare.

Steps:



Lesson 9: Object-Oriented Programming 

Classes and Objects
Python classes aur objects object-oriented programming
(OOP) ka foundation hain. Iska use large aur complex code
ko manageable aur reusable banane ke liye hota hai.
Chaliye is concept ko simple aur asaan tareeqy say
samajhte hain.

 Classes

Ek class ek blueprint ya template hai jisme aap define
karte ho ki ek object kaisa hoga aur usme kya properties
aur behaviors (attributes aur methods) honge.

class ClassName:
    # Class attributes and methods defined here
    pass

Syntax:

 Objects

Ek object class ka ek real-world instance hai. Jab aap ek
class ka use karte ho to ek object banate ho, jo class ke
defined attributes aur methods ko follow karta hai.

object_name = ClassName()

Syntax for Object:

 Example: Real-Life Analogy

Imagine karo ek class "Car" hai. Isme aap define karte ho ki
har car ka ek color, model, aur speed hogi, aur wo drive aur
stop kar sakti hai.
Agar aap ek object banao is class ka, jaise "Honda" ya
"Toyota", to wo sab class ke rules follow karte hain, lekin
unke attributes alag-alag ho sakte hain.



 Python Example

 Creating a Class and Object:

# Define a class
class Car:
    # Constructor to initialize properties
    def __init__(self, brand, color):
        self.brand = brand  # Object attribute
        self.color = color  # Object attribute

    # Method to display car details
    def show_details(self):
        print(f"Car Brand: {self.brand}, Color: {self.color}")

# Create an object of the class
my_car = Car("Toyota", "Red")

# Access object attributes
print(my_car.brand)  # Output: Toyota
print(my_car.color)  # Output: Red

# Call object method
my_car.show_details()  # Output: Car Brand: Toyota, Color: Red

 Key Points About Classes and Objects

Attributes:1.
These are variables that store data related to the
object.
In the example, brand and color are attributes.

Methods:2.
These are functions defined inside a class that
describe the behavior of objects.
In the example, show_details() is a method.

Constructor (__init__):3.
A special method used to initialize an object when
it’s created.
Automatically called when an object is made.



 Why Use Classes and Objects?

Reusability: Ek class ko multiple objects ke liye use kiya
ja sakta hai.

1.

Organization: Code ko structured aur readable banata
hai.

2.

Encapsulation: Data aur methods ko ek saath rakhna.3.
Scalability: Large programs mein classes aur objects
ka use code ko scalable banata hai.

4.

Summary:
Class: A template for creating objects.
Object: An instance of a class with real values.
Use __init__() to initialize objects.
Methods define the behaviors of objects.

Real-world analogy se classes aur objects ko samajhna
easy ho jata hai. Jaise har car ek object hai jo ek Car class
ke rules follow karta hai.

The full lesson is now available on the Needi Developer
YouTube channel.



Constructors and Instance Methods
Python mein constructors(__init__) aur instance
methods object-oriented programming (OOP) ka
important part hain. Ye dono concepts aapko classes aur
objects ko efficiently use karne mein madad karte hain.

 Constructors (__init__)

Constructor ek special method hota hai jo class ka object
banate waqt automatically call hota hai. Iska main kaam
object ko initialize karna (initialize karte waqt values assign
karna) hota hai.

__init__ method ko constructor kaha jata hai.
Jab aap class ka object banate hain, ye method
automatically call hota hai.

class ClassName:
    def __init__(self, param1, param2):
        self.attribute1 = param1
        self.attribute2 = param2

Syntax:

Explanation:
self: Ye ek reference hai jo object ko represent karta hai.
Jab bhi aap class ke andar kisi attribute ko access
karte hain, self ka use lazmi hota hai.
__init__ method: Jab aap object create karte hain, ye
method automatically call hota hai aur isme diya gaya
data object ke attributes mein store ho jata hai.

Example:

class Car:
    def __init__(self, brand, color):
        self.brand = brand  # Object ka attribute
        self.color = color  # Object ka attribute

# Object create karte waqt constructor ko call kiya jaata hai
my_car = Car("Honda", "Blue")

print(my_car.brand)  # Output: Honda
print(my_car.color)  # Output: Blue



Explanation:
__init__() method ne brand aur color ko initialize
kiya, jab my_car ka object bana.
Jab hum my_car.brand ya my_car.color ko access
karte hain, to wo object ke attributes se value le leta hai
jo constructor ne set ki thi.

 Instance Methods

Instance methods wo methods hain jo object ke specific
data (attributes) ko modify ya access karne ke liye use
kiye jate hain. Ye methods class ke objects ke saath
interact karte hain.

self parameter instance method ka hissa hota hai, jo
current object ko refer karta hai.
Ye methods class ke objects ko modify ya unke saath
operations perform karte hain.

class ClassName:
    def instance_method(self):
        # Method ka body
        pass

Syntax:

Example:

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age
    
    def greet(self):
        print(f"Hello, my name is {self.name} and I am {self.age} years old.")

# Object banate hain
person1 = Person("Naveed", 20)

# Instance method call karte hain
person1.greet() 
 # Output: Hello, my name is Naveed and I am 20 years old.



Explanation:
__init__ method ne name aur age ko initialize kiya.
greet method ek instance method hai jo object ke
attributes (name aur age) ke saath kaam karta hai aur
user ko greet karta hai.

 Instance Methods Example with Additional Attributes

Agar aapko object ke state ko modify karna ho, to instance
methods ka use karte hain.

class BankAccount:
    def __init__(self, owner, balance=0):
        self.owner = owner
        self.balance = balance
    
    def deposit(self, amount):
        self.balance += amount
        print(f"Deposited {amount}. New balance: {self.balance}")
    
    def withdraw(self, amount):
        if self.balance >= amount:
            self.balance -= amount
            print(f"Withdrew {amount}. Remaining balance: {self.balance}")
        else:
            print("Insufficient balance!")

# Object banate hain
account = BankAccount("Naveed", 1000)

# Instance methods ko call karte hain
account.deposit(500)  
# Output: Deposited 500. New balance: 1500
account.withdraw(200) 
# Output: Withdrew 200. Remaining balance: 1300
account.withdraw(1500)  
# Output: Insufficient balance!

Explanation:
deposit aur withdraw methods instance methods hain,
jo self.balance ko modify karte hain.
Ye methods object ki state ko modify karte hain, jaise
balance ko update karna.



 Key Points:

__init__ Constructor:1.
Class ka object banate waqt automatically call
hota hai.
Object ko initialize karta hai, attributes ko set karta
hai.

Instance Methods:2.
Object ke attributes ke saath interact karte hain.
self parameter ko use karke object ke state ko
modify karte hain.

Summary:
Constructors (__init__) object create karte waqt data
ko initialize karne ke liye use hote hain.
Instance Methods object ke attributes ke saath kaam
karte hain aur unko modify karte hain.

Is tarah se aap classes aur objects ko effectively use kar
sakte hain apne programs ko organize aur reusable
banane ke liye.

The full lesson is now available on the Needi Developer
YouTube channel.



Inheritance

 What is Inheritance?

 Types of Inheritance

Single Inheritance: Ek child class ek hi parent class se
inherit karti hai.
Multiple Inheritance: Ek child class do ya zyada parent
classes se inherit karti hai.
Multilevel Inheritance: Ek class ek aur class se inherit
karti hai, aur woh class kisi teesri class se inherit karti
hai.

Inheritance ek fundamental concept hai object-oriented
programming (OOP) ka, jo ek class ko doosri class ki
properties aur methods inherit karne ki permission deta
hai. Iska matlab hai, ek class doosri class ke functionality
ko use kar sakti hai bina usse dobara likhne ke.

Inheritance ka matlab hai ki ek class (child class) dusri
class (parent class) ke properties aur methods ko inherit
(le leti hai). Iska fayda yeh hota hai ki hume baar-baar
wohi code likhne ki zarurat nahi hoti.

Don’t Worry

Ghabrany ki zaroort nahi hai chaliye es concept ko sab sy
asaan tareeqy or kuch real-life examples ky zariye clear
karty hai 😊



 Single Inheritance

Ek parent class ka saara code ek child class mein reuse
hota hai.
Example:

class Animal:
    def speak(self):
        print("Animals make sounds.")

# Child Class
class Dog(Animal):  # Dog inherits from Animal
    def bark(self):
        print("Woof! Woof!")

# Create object of child class
dog = Dog()
dog.speak()  # Output: Animals make sounds..
dog.bark()   # Output: Woof! Woof!

Explanation:
Animal parent class hai, aur Dog child class hai.
Dog class ne Animal class ke method speak() ko
inherit kiya.
Dog class apne method bark() ko bhi define karti hai.

Another Example:

# Base Class
class Vehicle:
    def start(self):
        print("Vehicle starts.")

# Derived Class
class Car(Vehicle):
    def drive(self):
        print("Car is driving.")

# Example Usage
car = Car()
car.start()  # Output: Vehicle starts.
car.drive()  # Output: Car is driving.



Explanation:
Vehicle ek general concept hai (parent class).
Car usi ka ek specific type hai jo general functionality
ke saath apni unique functionality (drive) rakhta hai.

 Multiple Inheritance

Child class do ya zyada parent classes ke methods aur
properties ko inherit karti hai.
Example:

# Parent Class 1
class Mother:
    def care(self):
        print("Mother takes care.")

# Parent Class 2
class Father:
    def protect(self):
        print("Father provides protection.")

# Child Class
class Child(Mother, Father):
    def play(self):
        print("Child loves to play!")

# Create object of child class
child = Child()
child.care()       # Output: Mother takes care.
child.protect()    # Output: Father provides protection.
child.play()       # Output: Child loves to play!

Explanation:
Mother aur Father parent classes hain.
Child in dono classes se inherit karta hai aur inka
functionality use karta hai.

 Multilevel Inheritance

Ek class ek aur class se inherit karti hai, aur woh class kisi
aur class se inherit karti hai.



Example:

# Base Class
class Vehicle:
    def info(self):
        print("Vehicles are used for transportation.")

# Intermediate Class
class Car(Vehicle):
    def car_type(self):
        print("Car is a personal vehicle.")

# Derived Class
class SportsCar(Car):
    def speed(self):
        print("SportsCar is very fast!")

# Create object of derived class
sports_car = SportsCar()
sports_car.info()      # Output: Vehicles are used for
transportation.
sports_car.car_type()  # Output: Car is a personal vehicle.
sports_car.speed()     # Output: SportsCar is very fast!

Explanation:
Vehicle base class hai, jo basic properties provide karti
hai.
Car se Vehicle inherit karta hai, aur uske saath apna
method add karta hai.
SportsCar se Car inherit karta hai, aur further apne
features add karta hai.

Example: Company hierarchy, jaise ek "Employee", ek
"Manager", aur ek "Senior Manager".

Chain of Specialization

Chaliye Multilevel Inheritance ki ek or example dekhty hai
or es concept ko mazeed clear karty hai.



# Base Class
class Employee:
    def work(self):
        print("Employee works.")

# Intermediate Class
class Manager(Employee):
    def manage(self):
        print("Manager oversees work.")

# Derived Class
class SeniorManager(Manager):
    def strategy(self):
        print("Senior Manager develops strategies.")

# Example Usage
senior_manager = SeniorManager()
senior_manager.work()      # Output: Employee works.
senior_manager.manage()    # Output: Manager oversees work.
senior_manager.strategy() 
 # Output: Senior Manager develops strategies.

Explanation:
Employee ka kaam hota hai kaam karna.
Manager ka kaam hota hai kaam ka management.
Senior Manager ka role hota hai strategy banana.

 Key Features of Inheritance

Code Reusability: Parent class ka code child class me
reuse hota hai.
Extensibility: Child class apni functionality add kar
sakti hai.
DRY Principle: "Don't Repeat Yourself" kaam karta hai,
kyunki hume bar-bar code likhne ki zarurat nahi hoti.



Summary:
Single Inheritance: Ek class ek hi parent class se inherit
karti hai.
Multiple Inheritance: Ek class do ya zyada parent
classes se inherit karti hai.
Multilevel Inheritance: Ek class ek aur class se inherit
karti hai jo kisi teesri class se inherit karti hai.

Inheritance ka use karke aap apne programs ko modular
aur efficient bana sakte hain.

The full lesson is now available on the Needi Developer
YouTube channel.



Method Overriding

 Key Points of Method Overriding

Method Overriding ka matlab hai ki agar ek derived class
(child class) apni parent class ke method ko apne hisaab
se redefine kare, toh parent class ka method "override" ho
jata hai.
Yeh concept tab useful hota hai jab child class ka behavior
parent class se alag ho ya specific ho.

Same Method Name: Child class ka method aur parent
class ke method ka naam same hota hai.

1.

Polymorphism: Isse hum runtime par decide kar sakte
hain ki kaunsa method call karna hai (parent ya child).

2.

Super() Function: Agar child class me redefine karte
waqt bhi parent class ka method use karna ho, toh
hum super() function ka use karte ha

3.

 Basic Method Overriding

Scenario: Ek parent class hai Animal, aur ek derived class
hai Dog. Hum chahte hain ki Dog class ka speak() method
alag kaam kare.

# Parent Class
class Animal:
    def speak(self):
        print("Animal makes a sound.")

# Child Class
class Dog(Animal):
    def speak(self):
        print("Dog barks.")

# Example Usage
animal = Animal()
dog = Dog()

animal.speak()  # Output: Animal makes a sound.
dog.speak()     # Output: Dog barks.

Example:



Explanation:
Parent class ka speak() method ek general behavior
define karta hai.
Child class (Dog) ka speak() method specific behavior
define karta hai, jo parent method ko override karta hai.

 Using super() Function

Scenario: Ek Vehicle class hai jo ek general start() method
define karti hai. Ek derived class Car apna alag kaam
karegi lekin parent ka start() method bhi call karegi.

# Parent Class
class Vehicle:
    def start(self):
        print("Vehicle is starting.")

# Child Class
class Car(Vehicle):
    def start(self):
        super().start()  # Call parent class's start method
        print("Car is now ready to drive.")

# Example Usage
car = Car()
car.start()

Example:

Vehicle is starting.
Car is now ready to drive.

Output:

Explanation:
Child class (Car) ke start() method ne parent ka
start() method bhi use kiya using super().

 Bank Account System

Scenario: Ek BankAccount parent class hai jo funds
deposit karne ka method provide karti hai. Ek derived class
SavingsAccount interest add karegi aur method ko
override karegi.



# Parent Class
class BankAccount:
    def __init__(self, balance):
        self.balance = balance

    def deposit(self, amount):
        self.balance += amount
        print(f"Deposited: ${amount}. New balance: ${self.balance}")

# Child Class
class SavingsAccount(BankAccount):
    def deposit(self, amount):
        super().deposit(amount)  # Call parent method
        interest = amount * 0.02  # 2% interest
        self.balance += interest
        print(f"Interest added: ${interest}. New balance: ${self.balance}")

# Example Usage
account = SavingsAccount(100)
account.deposit(50)

Example:

Deposited: $50. New balance: $150
Interest added: $1.0. New balance: $151.0

Output:

Explanation:
SavingsAccount ka deposit method parent method ko
extend karta hai aur extra functionality (interest
calculation) add karta hai.

 Advantages of Method Overriding:

Specialized Behavior: Child class apna specific
behavior define kar sakti hai.
Code Reusability: Parent class ke common methods
reuse ho jate hain.
Flexibility: Runtime par hum decide kar sakte hain ki
kaunsa method call karna hai.



 When to Use Method Overriding?

Jab parent class ka behavior child class ke liye suitable
na ho.
Jab functionality extend karni ho parent class ke
method ki.
Jab runtime par alag behavior chahiye based on
object type.

Summary:
Method overriding inheritance ka ek powerful feature hai jo
classes ko customize karne ki flexibility deta hai. Isse hum
apne program ko modular aur easy-to-maintain bana
sakte hain!

The full lesson is now available on the Needi Developer
YouTube channel.



Class Methods vs Static Methods

 Class Methods

Python me methods do main types ke ho sakte hain jo ek
class ke andar define kiye jaate hain:

Class Methods1.
Static Methods2.

Dono hi methods class ke andar hote hain, lekin inka
purpose aur kaam alag hota hai.

Definition: Ye methods class ke liye kaam karte hain,
na ki kisi particular object ke liye.
How to Declare: Class methods ko @classmethod
decorator ke sath define karte hain.
First Parameter: Ye methods apne first parameter ke
taur par cls accept karte hain, jo ki class ko represent
karta hai.
Use Case:

Class-level data ko access ya modify karna.
Factory methods banane ke liye (alternative
constructors).

class Employee:
    company_name = "Needi Developer"  # Class-level attribute

    def __init__(self, name, salary):
        self.name = name
        self.salary = salary

    @classmethod
    def change_company_name(cls, new_name):
        cls.company_name = new_name

# Usage
print(Employee.company_name)  # Output: Needi Developer

Employee.change_company_name("AuraOfSurety")
print(Employee.company_name)  # Output: AuraOfSurety

Example:



Explanation:
change_company_name ek class method hai jo cls
use karta hai class-level attribute ko modify karne ke
liye.
Is method ka object se koi lena-dena nahi, sirf class ke
attributes ko change karta hai.

 Static Methods

Definition: Ye methods kisi bhi object ya class-level
data ko access nahi karte. Ye methods sirf class ke
andar logically related operations ke liye hote hain.
How to Declare: Static methods ko @staticmethod
decorator ke sath define karte hain.
First Parameter: Ye methods kisi parameter ko
automatically nahi accept karte (na self, na cls).
Use Case:

Helper ya utility functions banane ke liye jo class se
related hote hain, lekin kisi object ya class attribute
ko use nahi karte.

class MathHelper:
    @staticmethod
    def add_numbers(a, b):
        return a + b

# Usage
result = MathHelper.add_numbers(5, 10)
print(result)  # Output: 15

Example:

Explanation:
add_numbers ek static method hai jo input
parameters par kaam karta hai.
Is method ka class ke attributes ya methods se koi
lena-dena nahi.



 Static Methods

Feature Class Method Static Method

Decorator @classmethod @staticmethod

First Parameter cls (represents the class) None

Access to Class Data Yes No

Access to Object Data No No

Use Case Modify class-level data,
alternative constructors

Utility or helper
functions

 When to Use Class Methods and Static Methods?

Class Methods:
Jab hume class-level data ko manipulate karna ho.
Jab hume ek alternative constructor banana ho jo
object creation ko simplify kare.

Static Methods:
Jab hume helper ya utility functions banane ho jo
class ke andar logically fit hote hain.
Jab kisi operation me class ya object ka
involvement na ho.

Summary:
Class Methods: Class-level operations ke liye.
Static Methods: Utility functions ke liye.
Both: Code ko organize aur readable banate hain.

The full lesson is now available on the Needi Developer
YouTube channel.



Magic (Dunder) Methods

 __repr__ Method

Magic methods, also called dunder methods (kyunki yeh
double underscores se surrounded hote hain), Python me
special methods hote hain jo apke objects ka behavior
customize karte hain. __str__ aur __repr__ inme se
common hain, aur yeh decide karte hain ke object ko
string me kaise represent kiya jaye.

Purpose: Yeh object ki official ya "formal" string
representation provide karta hai. Mainly debugging aur
development ke liye use hota hai.
Kab Call Hota Hai: Jab aap repr(object) use karte ho
ya object ko Python shell me directly print karte ho.
Output Kaisa Hona Chahiye: Output clear aur
unambiguous hona chahiye, aur ideally aap eval() se
object ko recreate kar sako.

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __repr__(self):
        return f"Person(name='{self.name}', age={self.age})"

# Usage
person = Person("Naveed", 20)
print(repr(person))  # Output: Person(name='Naveed', age=20)

Example:

Explanation:
__repr__ ek formal description deta hai jo debugging
ke liye helpful hoti hai.



 __str__ Method

 Difference between __repr__ and __str__

Feature __repr__ __str__

Purpose Formal aur unambiguous Informal aur readable

Audience Developers (debugging) End-users (display)

Call Method repr(object) ya Python shell str(object) ya print(object)

Fallback Agar __str__ define na ho
to yeh use hota hai

Define ho to yeh use nahi
hota

Purpose: Yeh object ki readable aur "informal" string
representation deta hai. End-users ke liye information
display karne ke liye use hota hai.
Kab Call Hota Hai: Jab aap str(object) ya
print(object) use karte ho.
Output Kaisa Hona Chahiye: Output user-friendly aur
readable hona chahiye.

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __str__(self):
        return f"{self.name} is {self.age} years old."

# Usage
person = Person("Naveed", 20)
print(person)  # Output: Naveed is 20 years old.

Example:

Explanation:
__str__ ek concise aur readable description deta hai
jo end-users ke liye bana hota hai.



 Combined Example

class Product:
    def __init__(self, name, price):
        self.name = name
        self.price = price

    def __repr__(self):
        return f"Product(name='{self.name}', price={self.price})"

    def __str__(self):
        return f"{self.name}: ${self.price}"

# Usage
product = Product("Laptop", 1500)
print(repr(product))  
# Output: Product(name='Laptop', price=1500)
print(product)        # Output: Laptop: $1500

Agar dono methods ek class me ho to kaise kaam karte
hain:

Explanation:
__repr__: Developers ke liye detailed description.
__str__: Users ke liye readable output.

Summary
__repr__: Formal aur detailed output (useful for
developers).
__str__: Friendly aur readable output (useful for end-
users).
Fallback: Agar __str__ define na ho, to Python
__repr__ ko use karega.

The full lesson is now available on the Needi Developer
YouTube channel.



Operator Overloading

 Why Use Operator Overloading?

 How Does It Work?

Operator Method Example

+ __add__ obj1 + obj2

- __sub__ obj1 - obj2

* __mul__ obj1 * obj2

/ __truediv__ obj1 / obj2

== __eq__ obj1 == obj2

< __lt__ obj1 < obj2

> __gt__ obj1 > obj2

Operator overloading ka matlab hai kisi existing operator
ka behavior customize karna jab wo user-defined objects
ke sath use hota hai. Iska matlab hai ki aap Python ke
built-in operators (like +, -, *, etc.) ko apne custom classes
ke objects ke liye define kar sakte ho.

Readable Code: Aap complex functionality ko readable
aur concise syntax ke through implement kar sakte ho.

1.

Real-Life Simulations: Custom objects ko natural aur
intuitive way me manipulate karne ki flexibility milti hai.

2.

Customization: Objects ke behavior ko apne
requirement ke mutabiq change kar sakte ho.

3.

Operator overloading karne ke liye aapko special methods
(dunder/magic methods) use karne hote hain. Har
operator ke liye ek corresponding magic method hota hai.



 Overloading the + Operator

Without Overloading:

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

p1 = Point(2, 3)
p2 = Point(4, 5)

# This will raise an error
result = p1 + p2

Without Overloading:

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __add__(self, other):
        return Point(self.x + other.x, self.y + other.y)

    def __str__(self):
        return f"({self.x}, {self.y})"

# Usage
p1 = Point(2, 3)
p2 = Point(4, 5)
result = p1 + p2
print(result)  # Output: (6, 8)

Explanation:
__add__ method ko redefine karke humne + operator
ka behavior customize kiya.
Do Point objects add hone par unke x aur y
coordinates ko add karke ek naya Point return hota hai.



 Other Examples

Overloading * for Custom Multiplication:

class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __mul__(self, scalar):
        return Point(self.x * scalar, self.y * scalar)

    def __str__(self):
        return f"({self.x}, {self.y})"

# Usage
p1 = Point(2, 3)
result = p1 * 3
print(result)  # Output: (6, 9)

Overloading Comparison Operators (<, >):

class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def __lt__(self, other):
        return self.age < other.age

# Usage
person1 = Person("Naveed", 20)
person2 = Person("Waqas", 15)

print(person1 < person2)  # Output: False

Explanation:
__lt__ method define karke age ke basis par
comparison ka behavior customize kiya gaya.



Summary
Operator overloading Python me ek powerful feature hai jo
user-defined objects ke behavior ko natural aur readable
banata hai. Iska proper use complex tasks ko simplify kar
sakta hai aur code ko zyada maintainable banata hai.

 Key Points to Remember

Operator overloading se readability aur functionality
dono improve hoti hain.

1.

Har operator ke liye ek specific magic method hota hai.2.
Overloading ka misuse na karein; operations ka
behavior logical aur intuitive hona chahiye.

3.

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

 Build a Simple Banking System

Create a banking system using object-oriented
programming in Python. The system should allow a user to
perform the following actions:

Check Balance: Display the current account balance.1.
Deposit Money: Add money to the account.2.
Withdraw Money: Deduct money from the account if
the balance is sufficient.

3.

Exit: Close the application.4.
Requirements:

Use a class BankAccount to represent the bank
account.
Implement methods for each operation
(check_balance, deposit, withdraw).
Use a simple loop to allow the user to perform multiple
actions until they choose to exit.



Lesson 10: Python Modules

Modules
Modules Python ke ready-made tools hote hain jo aapke
kaam ko easy banate hain. Yeh ek tarah ke pre-written
code libraries hote hain jinko aap apne programs me
directly use kar sakte ho. Iska fayda yeh hota hai ki aapko
sab kuch scratch se likhne ki zarurat nahi padti.

 Why Use Modules?

Code Reusability: Ek baar likha code baar-baar alag
programs me use kar sakte ho.
Time Saving: Ready-made solutions milte hain, to time
bachta hai.
Organized Code: Modules use karne se code clean aur
manage karne me easy hota hai.
Specialized Tools: Har module ek specific kaam ke liye
hota hai, jaise math calculations, file handling, ya
random numbers generate karna.

 How to use Modules?

Module ko use karne ke liye import keyword ka use karte
hain.

import module_name

Example:



 Examples of Python's Built-in Modules

os module ka use operating system ke sath kaam karne ke
liye hota hai.
Kahan Use Hota Hai?

Current directory check karne me
Files aur folders create/delete karne me

import os

# Current directory ka naam
print("Current Directory:", os.getcwd())

# Naya folder banaiye
os.mkdir("NewFolder")

Example:

 1. os Module

math module advanced mathematical functions provide
karta hai, jaise square root, power calculation, etc.
Kahan Use Hota Hai?

Complex calculations ke liye
Rounding numbers ke liye

import math

# Square root nikalna
print("Square root of 16:", math.sqrt(16))

# Pi ki value dekhna
print("Value of Pi:", math.pi)

Example:

 2. math Module



random module ka use random numbers ya random
choices generate karne ke liye hota hai.
Kahan Use Hota Hai?

Games banane me
Test data banane ke liye

import random

# 1 se 10 ke beech ek random number generate kare
print("Random number:", random.randint(1, 10))

# Ek random item choose kare list me se
choices = ["Apple", "Banana", "Cherry"]
print("Random choice:", random.choice(choices))

Example:

 3. random Module

 Benefits of Modules

Development time save hota hai.1.
Code easy aur optimized hota hai.2.
Programs ko samajhna aur maintain karna easy hota
hai.

3.

os, math, aur random jaise modules aapko powerful aur
efficient programs banane me help karte hain, bina zyada
effort ke!

The full lesson is now available on the Needi Developer
YouTube channel.



if __name__ == "__main__"
Python me if __name__ == "__main__" ek special
construct hai jo aapke program ka behavior control karne
ke liye use hota hai, jab aapka Python file directly run hota
hai ya kisi aur file me import hota hai.

 What is its basic function?

Direct Execution ke liye Code Chalana:
Jab file ko directly execute kiya jata hai 
(python myfile.py), tab iska code chalega.
Import ke Samay Code Avoid Karna:
Jab file ko kisi aur file me import kiya jata hai, to
if __name__ == "__main__" ke andar ka code nahi
chalega.

 What is __name__?

Har Python file ka ek special variable hota hai
__name__.
Jab file directly chalti hai, tab __name__ ki value
"__main__" hoti hai.
Agar file import hoti hai, to __name__ us file ke naam
ke barabar hoti hai ("myfile").

 How its Work?

# myfile.py
def greet():
    print("Hello from myfile!")

if __name__ == "__main__":
    print("This file is running directly.")
    greet()

Example:

 1: File Directly Run Ho Rahi Hai



This file is running directly.
Hello from myfile!

Output (when running python myfile.py):

# main.py
import myfile

print("This is main.py.")

Example:

 2: File Import Ho Rahi Hai

This is main.py.

Output (when running python main.py):

Yahan par myfile ka code jo if __name__ == "__main__"
ke andar hai, nahi chalega.

 Why Use This?

Code Reusability:
Aap ek file ka code import karte ho bina uske execution
code ko chalaye.
Testing:
File ke andar kuch functions aur logic test karne ke liye
use hota hai, jab wo file akeli chal rahi ho.
Cleaner Structure:
Isse program ka flow clear hota hai, aur unnecessary
code execution avoid hota hai.

Summary
if __name__ == "__main__" ek best practice hai jo
ensure karta hai ki:

File ka kuch code tabhi chale jab wo file directly execute
ho.
Import ke samay unnecessary code execute na ho.

The full lesson is now available on the Needi Developer
YouTube channel.



Installing Third-Party Libraries with pip
Python ka pip ek package manager hai jo aapko 
third-party libraries aur tools install karne ki facility deta
hai. Ye libraries aapke projects ke kaam ko asaan aur
efficient banate hain.

 What is pip?

pip ka full form hai: "Pip Installs Packages".
Ye ek command-line tool hai jo Python Package Index
(PyPI) se libraries download aur install karta hai.
Iske through aap Python ki built-in functionality ko
extend kar sakte ho

 How to Use pip

pip --version

Pehle ensure karein ki pip installed hai:

 1. pip Ko Check Karna (Installed Hai Ya Nahi):

Output kuch is tarah ka hona chahiye:

pip 21.3.1 from ... (python 3.x)

Agar pip install nahi hai, to aap is command se install kar
sakte ho:

python -m ensurepip --upgrade

pip install <library-name>

Koi library install karne ke liye command:

 2. Third-Party Library Install Karna:

Example: NumPy library install karna:

pip install numpy



Output:

Collecting numpy
Downloading numpy-1.23.3-cp39-cp39-win_amd64.whl (14 MB)
Installing collected packages: numpy
Successfully installed numpy-1.23.3

pip install --upgrade <library-name>

Aap existing library ka latest version install kar sakte ho:

 3. Library Upgrade Karna:

Example: NumPy library install karna:

pip install --upgrade numpy

pip uninstall <library-name>

Agar kisi library ki zarurat nahi hai, to aap ise uninstall kar
sakte ho:

 4. Library Uninstall Karna:

Example:

pip uninstall numpy

 How to check if a library is installed?

Aap installed libraries ki list dekhne ke liye ye command
use kar sakte ho:

pip list

Output:

Package    Version
---------- -------
numpy      1.23.3
requests   2.28.1



 Requirements File

numpy
requests
pandas

Agar aap ek project ke liye multiple libraries install karna
chahte ho, to unhe ek file me list kar sakte ho:

 1. Create a file named requirements.txt:

pip install -r requirements.txt

 2. Install all libraries in one command:

 Why Use pip?

Easy Access to Libraries: Thousands of pre-built
libraries PyPI par available hain.
Time-Saving: Complex tasks ke liye already optimized
solutions use kar sakte hain.
Project Management: Virtual environments ke saath
pip libraries ko alag-alag projects ke liye manage kar
sakta hai.

Summary
pip ek powerful tool hai jo Python developers ka kaam
asaan banata hai.
Aap libraries ko install, update, aur uninstall kar sakte
ho.
Libraries ko manage karne ke liye requirements.txt ka
use karo.

The full lesson is now available on the Needi Developer
YouTube channel.



Virtual Environments (venv)
Python ke virtual environments (venv) ek tarah ke
isolated workspace hote hain jisme aap apne project-
specific dependencies (libraries, packages, etc.) manage
kar sakte ho bina system-wide Python installation ko affect
kiye.

 Why is a Virtual Environment necessary?

Dependency Conflicts Avoid Karna
Agar ek project me ek package ki specific version
chahiye aur dusre project me usi package ki different
version chahiye, to virtual environment yeh problem
solve karta hai.
Clean Project Setup
Har project ka apna environment hota hai, jo
dependencies aur configurations ko isolated rakhta
hai.
Easy Deployment
Virtual environment me sirf wahi packages hote hain jo
project ko chahiye, isliye deployment smooth hota hai.

 How to create Virtual Environment

python -m venv myenv

Command:

 1. Create Virtual Environment

python: System Python interpreter.
-m venv: Module to create virtual environment.
myenv: Virtual environment ka naam.



myenv\Scripts\activate

Windows:

 2. Activate Virtual Environment

source myenv/bin/activate

Mac or Linux:

Aapko terminal ke left side me (myenv) likha milega, jo
batata hai ki environment active hai.

deactivate

Command:

 3. Deactivate Virtual Environment

Yeh system-wide Python me wapas le aata hai.

 Installing Packages in Virtual Environment

pip install package_name

 1. Packages Install Karna

Virtual environment activate karne ke baad normal tarike
se install karte hain:

pip list

 2. Packages Ki List Dekhna

pip freeze > requirements.txt

 3. Requirements File Banana

Jo bhi packages install hain unko list karne ke liye:



pip install -r requirements.txt

 4. Requirements File Se Install Karna

Alag-alag projects ke liye alag-alag environments ban
jate hain.

1.

System-wide Python environment ko clean aur stable
rakhta hai.

2.

Deployment aur collaboration easy banata hai.3.
Pro Tip: Hamesha virtual environment ka use karo jab bhi
aap kisi naye project pe kaam shuru karo!

 Benefits of Virtual Environment

The full lesson is now available on the Needi Developer
YouTube channel.



Exercise

Write a script that uses the os, math, and random
modules to perform the following tasks:

 File Management Script

Create a Directory:
Use the os module to create a directory named
RandomFiles in the current working directory.

Generate Random Files:
Use the random module to generate 5 random
filenames.
Each filename should be a random number
between 1000 and 9999 with a .txt extension.
Example filenames: 1054.txt, 8762.txt.

Write Data to Files:
For each file, generate a random number and
calculate its square root using the math module.
Write the random number and its square root into
the file in this format:

Display the Created Files:
List all the files created in the RandomFiles directory
using the os module.

Random Number: 25
Square Root: 5.0



Lesson 11: Advanced Python Concepts

Introduction to Generators and
Iterators

Python me generators aur iterators kaafi powerful tools
hain jo hum data ko efficiently handle karne ke liye use
karte hain, especially jab large datasets ke saath kaam
karte hain ya data ko dynamically generate karna ho.

 What is Iterators?

Iterator ek aisi object hoti hai jo kisi collection (like list,
tuple, ya string) ke elements ko ek-ek karke access karne
me madad karti hai.
Iterator kaise kaam karta hai?

Iterator ke paas do important methods hote hain:
__iter__() – Jo iterator object ko return karta hai.
__next__() – Jo sequence ka agla element return
karta hai. Agar sequence khatam ho jaye, toh
StopIteration exception raise hota hai.

numbers = [10, 20, 30]
iterator = iter(numbers)  # Iterator object banaya

print(next(iterator))  # Output: 10
print(next(iterator))  # Output: 20
print(next(iterator))  # Output: 30
# print(next(iterator))  # StopIteration error raise karega

Example:

Yahan hum list ke elements ko ek-ek karke access karte
hain.



 What is Generators?

def count_up_to(n):
    count = 1
    while count <= n:
        yield count  # Current value ko pause karke return karega
        count += 1

# Generator use karna
counter = count_up_to(5)
print(next(counter))  # Output: 1
print(next(counter))  # Output: 2
print(next(counter))  # Output: 3

Generator ek special type ka iterator hai jo function aur
yield keyword ke zariye banaya jata hai.

Ye saare data ek saath return karne ke bajaye, 
ek-ek karke on-demand generate karta hai.
Generators memory-efficient hote hain, kyunki ye
saara data memory me store nahi karte.

Generator kaise kaam karta hai?
yield keyword use karke generator function se value
return ki jati hai.
Jab generator ke __next__() method ko call karte
hain, execution wahi se resume hoti hai jahan se last
yield hua tha.

Example:



 What is Generators?

Feature Iterator Generator

Definition Iterator ek object hota hai. Generator ek function ke
zariye banta hai.

Keyword
Manually __iter__() aur
__next__() likhna padta

hai.

yield keyword use hota
hai.

Memory Usage Sequence ko memory me
store karta hai.

Data on-the-fly generate
karta hai.

Efficiency Less efficient for large
datasets.

More efficient for large
datasets.

Summary
Iterator predefined objects hote hain jo sequence ko
traverse karte hain.
Generator ek tarika hai efficiently data generate karne
ka, jab poore dataset ki zarurat na ho.

Dono hi Python ke data processing ko faster aur memory-
efficient banate hain!

The full lesson is now available on the Needi Developer
YouTube channel.



Map, Filter, and Reduce Function
Python me map, filter, aur reduce functions kaafi powerful
tools hain jo functional programming concepts ke saath
kaam karte hain. Ye functions aapko data processing me
madad karte hain, aur operations ko short aur readable
banate hain.

 1. map() Function

map() ka kaam hai ek given function ko kisi sequence ke
har element par apply karna aur ek nayi sequence return
karna.

map(function, iterable)

Syntax:

function: Aapka function jo har element par apply
hoga.
iterable: Aapki list, tuple, ya koi aur sequence.

# Squaring each number in a list
numbers = [1, 2, 3, 4, 5]
squared = map(lambda x: x**2, numbers)
print(list(squared))  # Output: [1, 4, 9, 16, 25]

Example:

Yahan har number ko square kar diya gaya.

Lambda function bnany ka ek tareeqa hai esko next
chapter me details me seekhy gy.

 2. filter() Function

filter() ka kaam hai ek given condition ke basis par
sequence ke elements ko filter karna. Ye sirf un elements
ko return karta hai jo condition ko satisfy karte hain.

filter(function, iterable)

Syntax:



function: Ek condition-checking function jo True ya
False return karega.
iterable: Sequence jisme filter lagana hai.

# Filter odd numbers from a list
numbers = [1, 2, 3, 4, 5, 6]
odd_numbers = filter(lambda x: x % 2 != 0, numbers)
print(list(odd_numbers))  # Output: [1, 3, 5]

Example:

Yahan sirf odd numbers ko filter kiya gaya.

 3. reduce() Function

reduce() function cumulative operation perform karta hai,
jaise sum, multiplication, ya concatenation. Ye ek iterable
ke saare elements ko ek single value me reduce kar deta
hai.

reduce(function, iterable)

Syntax:

function: Ek function jo do arguments leta hai aur
cumulative result deta hai.
iterable: Sequence jisme operation karna hai.

from functools import reduce

# Multiply all numbers in a list
numbers = [1, 2, 3, 4]
result = reduce(lambda x, y: x * y, numbers)
print(result)  # Output: 24

Example:

Yahan saare numbers ko multiply karke ek hi value me
reduce kar diya.



 Comparison of map, filter, and reduce:

Function Purpose Output

map Apply function to all elements in
a sequence. Transformed sequence.

filter Select elements based on a
condition. Filtered sequence.

reduce Combine all elements into a
single result. Single cumulative value.

Summary
map(): Apply a function to all elements.
filter(): Select elements based on a condition.
reduce(): Combine all elements into one result.

Ye functions aapko Python me data processing tasks ko
simplify karne me madad karte hain!

 Why Use These Functions?

Shorter Code: Ek line me kaam ho jata hai jo multiple
lines me hota.
Readability: Code zyada clean aur understandable
hota hai.
Efficiency: Functional programming ka benefit milta
hai.

The full lesson is now available on the Needi Developer
YouTube channel.



Lambda Functions
Python mein lambda functions ek short aur concise way
hai functions likhne ka. Inko anonymous functions bhi
kehte hain kyunki ye bina kisi naam ke hoti hain. Lambda
functions ek single line mein likhe jaate hain aur yeh tab
use hote hain jab hume chhoti aur temporary functionality
chahiye hoti hai.

arguments: Input parameters, jaise normal functions
mein hote hain.
expression: Ek single line ka expression jo evaluate
hoke result return karta hai.

Syntax:

lambda arguments: expression

Example:

square = lambda x: x * x
print(square(5))  # Output: 25

 Key Features of Lambda Functions

Single Expression: Lambda functions ek hi line ka
expression handle karte hain.

1.

No Name: Ye anonymous hote hain, yani inka koi naam
nahi hota unless aap inko kisi variable mein store
karein.

2.

Temporary Use: Ye functions chhoti aur one-time
functionality ke liye useful hain.

3.

Inline Use: Ye functions generally inline use hote hain,
jaise higher-order functions ke saath.

4.



 Why Use Lambda Functions?

Jab aapko ek simple functionality likhni ho bina ek pura
function define kiye.
Jab ek hi line ka kaam ho aur function ko reuse karne ki
zarurat na ho.
Functional programming mein (like map, filter, reduce
ke saath) kaam karne ke liye.

 Examples of Lambda Functions

 1. Simple Lambda Function

add = lambda a, b: a + b
print(add(2, 3))  # Output: 5

 2. Using Lambda with map()

numbers = [1, 2, 3, 4]
squares = list(map(lambda x: x * x, numbers))
print(squares)  # Output: [1, 4, 9, 16]

map() function ka use ek list ke har element par operation
karne ke liye hota hai.

 3. Using Lambda with filter()

numbers = [1, 2, 3, 4, 5, 6]
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers)  # Output: [2, 4, 6]

filter() function ka use ek list ke elements ko filter karne ke
liye hota hai.

 4. Using Lambda with sorted()

students = [("Naveed", 90), ("Sara", 85), ("Fatima", 95)]
sorted_students = sorted(students, key=lambda x: x[1])
print(sorted_students)
# Output: [('Sara', 85), ('Naveed', 90), ('Fatima', 95)]

sorted() function ka use custom sorting karne ke liye hota
hai.



 Limitations of Lambda Functions

Single Expression Only: Lambda functions ek se zyada
lines handle nahi karte.

1.

No Name: Inka naam nahi hota, isliye debugging
mushkil ho sakti hai.

2.

Not for Complex Logic: Ye sirf simple operations ke liye
suitable hain.

3.

 When to Use Lambda Functions?

Jab aapko ek chhoti si functionality likhni ho.1.
Jab aap temporary use ke liye ek function create karna
chahte hain.

2.

Functional programming methods jaise map, filter, aur
reduce ke saath kaam karte waqt.

3.

The full lesson is now available on the Needi Developer
YouTube channel.



Walrus Operator (:=)
Walrus Operator ka asal naam Assignment Expression
Operator hai, aur ye Python 3.8 me introduce hua tha. Iska
symbol := hai, jo aapko ek variable me value assign karte
waqt uska use karne ki facility deta hai.
Iska naam Walrus Operator isliye rakha gaya kyunki iska
symbol (:=) ek walrus ke face jaisa lagta hai. 🦭

 Purpose of Walrus Operator

Reduces Code Length: Aap ek hi expression me value
assign aur uska use kar sakte hain.
Improves Readability: Bar-bar alag line me value
assign karne ki zarurat nahi hoti.

variable := expression

Syntax:

 Normal Assignment vs Walrus Operator

data = input("Enter your name: ")
if len(data) > 5:
    print(f"Your name, {data}, is long!")

Without Walrus Operator:

if (data := input("Enter your name: ")) and len(data) > 5:
    print(f"Your name, {data}, is long!")

With Walrus Operator:

 Where to Use the Walrus Operator

Walrus Operator loops me kaafi useful hai, jab aap ek hi
variable me repeatedly data assign aur check karte hain.

 1. In Loops



numbers = [1, 2, 3, 4, 5]
while len(numbers) > 0:
    current = numbers.pop()
    print(f"Processing: {current}")

Without Walrus Operator:

numbers = [1, 2, 3, 4, 5]
while (current := numbers.pop()):
    print(f"Processing: {current}")

With Walrus Operator:

Conditions check karte waqt bar-bar variable assign karne
ki zarurat nahi hoti.

 2. In Conditional Statements

data = input("Enter something: ")
if len(data) > 3:
    print(f"Length is greater than 3: {data}")

Without Walrus Operator:

if (data := input("Enter something: ")) and len(data) > 3:
    print(f"Length is greater than 3: {data}")

With Walrus Operator:

List comprehensions me efficiently data assign aur use
karna possible hota hai.

 3. In List Comprehensions

results = []
for x in range(10):
    square = x**2
    if square > 20:
        results.append(square)
print(results)

Without Walrus Operator:

results = [square for x in range(10) if (square := x**2) > 20]
print(results)

With Walrus Operator:



 Purpose of Walrus Operator

Assignment (=): Ek variable me value assign karta hai,
aur usse use karne ke liye dusri line me likhna padta
hai.
Walrus (:=): Ek hi line me value assign aur use karne ki
flexibility deta hai.

 Key Points to Remember

Requires Python 3.8 or Newer: Ye feature sirf Python 3.8
aur uske baad wale versions me kaam karta hai.
Not for Regular Assignments: Iska use sirf tab karein
jab aapko ek hi line me value assign aur use karni ho.

 Why Use Walrus Operator?

Reduces redundancy in code.
Makes complex conditions simpler and easier to read.
Helpful in loops and comprehensions.

Walrus Operator aapke code ko concise aur efficient
banata hai, lekin iska use tab karein jab zarurat ho aur
readability kharaab na ho.

The full lesson is now available on the Needi Developer
YouTube channel.



Mega Knight Projects

A Student Management System is a comprehensive
project that combines almost all the concepts from your
Python course, providing a real-world scenario to test your
skills.

 1. Student Management System

You will create a command-line Student Management
System where users (teachers) can:

Add students to a database.1.
View student details.2.
Update student information.3.
Delete student records.4.
Search for students.5.
Generate a performance report.6.

The project will use file handling to save data persistently,
and incorporate functions, OOP, control flow, error
handling, and data structures.

 Project Description

The full project is now available on the Needi Developer
YouTube channel.



Create a Python-based virtual assistant that listens to user
voice commands, processes them, and provides
responses via voice and text. This assistant will utilize
Python’s speech recognition and text-to-speech libraries
to interact with the user.

 2. Virtual Assistant Project

Greeting the User:1.
The assistant greets the user with a voice response
based on the time of day (morning, afternoon,
evening).

Voice Command Recognition:2.
The assistant will understand voice commands and
convert them into text using the
speech_recognition module.

Responding via Voice:3.
The assistant replies to the user with a voice
response using pyttsx3 or gTTS.

Performing Tasks:4.
Open basic system applications (like Notepad or
Calculator).
Fetch current time and say it.
Tell jokes from a predefined list.
Search for specific files or folders in a directory.

Handling Errors:5.
Gracefully handles invalid commands or voice
recognition issues with a user-friendly response.

 Key Features

The full project is now available on the Needi Developer
YouTube channel.



Create a Python-based Inventory Management System
that allows users to manage product stock, track sales,
and generate reports.

 3. Inventory Management System

Product Management:1.
Add, update, or delete product details (name, price,
quantity, etc.).

Stock Management:2.
Check available stock for products.
Update stock levels after a sale or purchase.

Sales Tracking:3.
Record sales transactions (product, quantity sold,
total price).
Calculate and display total revenue.

Reports:4.
Generate reports showing:

Products running low on stock.
Total sales and revenue.

User-Friendly Interface:5.
Use command-line interaction to display options
and collect user input.

 Key Features

The full project is now available on the Needi Developer
YouTube channel.



Create a Python-based application to track and analyze
personal expenses.

 4. Personal Expense Tracker

Expense Management:1.
Add, update, and delete expense entries (date,
category, amount, description).

Category-Based Analysis:2.
Categorize expenses (Food, Travel, Entertainment).
Display total spent per category.

Monthly Summary:3.
Provide a monthly report showing:

Total expenses.
Most spent category.

Savings Calculator:4.
Compare monthly expenses to a user-defined
budget and calculate savings.

Data Visualization (Optional):5.
Display bar charts or pie charts of expense
distribution using Matplotlib.

 Key Features

The full project is now available on the Needi Developer
YouTube channel.



Advanced Tips for Becoming a
Python Knight

Practice Daily:1.
Coding is like learning a new language—the more
you practice, the better you get. Dedicate at least
30 minutes daily to writing Python code.

Explore Real-World Projects:2.
After completing your book, start working on real-
world projects like web development
(Django/Flask), data analysis (Pandas/Numpy), or
automation scripts.

Learn Advanced Concepts:3.
Dive into data structures, algorithms, and design
patterns. These are crucial for writing optimized and
scalable code.

Contribute to Open Source:4.
Contributing to open-source projects will not only
enhance your skills but also connect you with a
community of developers worldwide.

Keep Learning:5.
Python evolves constantly, so keep up with new
libraries and features. Follow platforms like Real
Python, Stack Overflow, and GitHub.

Understand Problem-Solving:6.
Focus on breaking complex problems into smaller
parts and solving them step by step.

Read Code Written by Others:7.
Explore repositories on GitHub to understand
different coding styles and techniques.

Build a Portfolio:8.
Showcase your projects on platforms like GitHub,
Kaggle, or LinkedIn.


