T
. SR
o -
ek N 3.
] T . .
f <. .
:)
D A4 ~ .
: ;
. -
{ oo O { e
.

IHE'MOST POWERFUL PYTHON BODK

AUTHOR :
NEEDI DEVELOPER

Introduction

Python Knight is not just a book; it's your ultimate guide to
mastering Python, crafted with care and precision by

Needi Developer, a passionate educator and developer with
a vision to simplify programming for everyone. Whether
you're taking your first steps in Python or looking to sharpen
your existing skills, this book equips you with the tools to
become a true knight in the world of coding.

What Makes Python Knight Unique?

e Step-by-Step Journey: This book guides you from
Python's fundamentals to advanced concepts with real-
world examples and practical exercises.

e Knight's Quest for Excellence: Like a knight embarks on an
adventurous quest, you'll explore topics ranging from
basic syntax to object-oriented programming, data
structures, and more.

e Real-Life Applications: Beyond theory, the book dives into
real-life coding challenges, empowering you to solve
problems like a pro.

e Interactive Learning: With quizzes, coding challenges, and
projects, Python Knight ensures you actively engage with
every topic.

About the Author: Needi Developer

Needi Developer is a trailblazer in the tech world, blending a
passion for teaching with hands-on experience in software
development. With a mission to make programming
accessible to everyone, Needi has dedicated their efforts to
creating intuitive courses and resources that cater to
learners from all walks of life. Their motto? “Code to create,
learn to lead.”

Understanding the unique challenges faced by learners in
Asiq, especially those for whom English is not a primary
language, Needi has gone the extra mile to ensure
inclusivity. Python Knight is available in two distinct versions:
e Hinglish/Roman Urdu Version — Tailored for learners in
South Asiq, this version helps those who may struggle
with traditional English resources to easily grasp
programming concepts.
e English Version — A universal edition designed for readers
worldwide.
By offering Python Knight for free, Needi Developer aims to
break barriers to education, ensuring that everyone—
regardless of background—has the opportunity to learn and
grow in the ever-evolving world of technology. This initiative
IS a testament to Needi’'s unwavering commitment to
empowering individuals to unlock their potential and build a
brighter future.
Join the journey and discover how coding can transform
lives, one learner at a time.

CONTENTS

6 ------ Lesson 1: Basics of Python
Olesasss What is Python?
3) S Installing Python and VS Code

1l oo Writing and Running Python Scripts.
1/ === Python Syntax and Comments.
21 ----- Exercise: Short Quiz.

23 ----- Lesson 2: Variables and Data Types
23 ----- Variables.

24 ----- Constants.

24 ----- Keywords.

26 ----- Data Types.

29 ———-- Type Conversion.

32 ----- Input and Output.

e{5) oo Exercise: Simple Calculator.

)9y oo Lesson 3: Strings

36 ----- Strings.

40 ----- String Methods.

44 ----- Escape Sequence.

47 ----- f-Strings (Formatted Strings).

ife) e Docstrings (Documentation Strings).
ik e Exercise: String Manipulation Program.
52 ----- Lesson 4: Control Flow

52 ----- If, elif, else statements.

56 ----- Loops

60 ----- Break, Continue and Pass.

64 ----- Shorthand if-Else.

49 ----—- Docstrings (Documentation Strings).

66 ----- Exercise: ATM Simulation.

67 ----- Lesson 5: Functions

67 ----- Defining Functions and Return.
70 ----- Functions Arguments.

748} mm Exercise: Prime Number Check.
74 ----- Lesson 6: Data Structures

74 ----- List

77 —---- Tuples

80 ----- Sets.

85 ----- Dictionaries.

88 ----- Enumerates and Zip Functions.

91 ----- Exercise: Data Structures Puzzle.

92 ----- Lesson 7: Error Handling

92 ----- Introduction to Errors and Exceptions.
94 ----- How to Handle Exceptions?
97 --—-- Raising Custom Errors

101 ---- Debugging Basics.

105 ----- Lesson 8: File Handling

105 ----- Reading and Writing Files.

108 ----- Important Methods in File Handling.

111 ----- Understanding seek() and tell() Functions in File Handling.
114 ---- Exercise: File-Based-To-Do List Program.

115 ----- Lesson 9: Object-Oriented Programming
115 ----- Classes and Objects.

118 ----- Constructors and Instance Methods.

122 ----- Inheritance.

128 ---- Method Overriding.

132 ---- Class Methods vs Static Methods.

135 ---- Magic (Dunder) Methods.

138 ---- Operator Overloading.

142 ---- Exercise: Build a Simple Banking System.

143 ----- Lesson 10: Python Modules
143 ----- Modules.

146 ----- if _name__=="_ _main__".
148 ----- Installing Third-Party Libraries with pip.
151 ---- Virtual Environments (venv).

154 ---- Exercise: File Management Script.

1 [[0)5) oo Lesson 11: Advanced Python Concepts
155 ----- Introduction to Generators and Iterators.
158 ----- Map, Filter, and Reduce Function.

161 ----- Lambda Functions.

164 ---- Walrus Operator (:=).

167 ---- Mega Knight Projects.

171 ----- Advanced Tips For Becoming a Python Knight

Lesson 1. Basics of Python

What Is Python

Python ek high-level programming language hai jo aqgj
duniya ki sabse popular aur powerful languages me se ek
hai. Ye language 1991 me Guido van Rossum ne design ki thi.
Python ka naam ek comedy show "Monty Python's Flying
Circus’ se inspired hai, iska snakes se koi lena dena nahi hai!

-~

L

Python Ki Khasiyat

e Simple aur Easy-to-Learn: Python ki syntax (likhne ka
tareeqa) bilkul simple aur human-readable hai. Agar
aapko basic English samajh aati hai, to aap Python
seekhna shuru kar sakte hain.

Example:

Is code se screen par "Hello World!" print hoga.

e Multipurpose Language: Python ko har tarah ke kaam ke
liye use kiya ja sakta hai:

o Web Development (e.g., Django, Flask frameworks)
o Data Science aur Machine Learning

o Game Development

o Mobile Apps aur Desktop Apps

o Web Scraping (data collect karna websites se)

o Automation (repetitive tasks automate karna)

e Free Aur Open Source: Python ek free aur open-source
language hai, matlab aap ise free use kar sakte hain aur
modify bhi kar sakte hain apne use ke hisaab se.

e Cross-Platform: Python har operating system (Windows,
Mag, Linux) pe chalti hai. Aap ek jagah code likhein aur
wo har jagah kaam karega.

e Large Community: Python ki ek badi aur active
community hai. Matlab agar aapko kahin problem aaye,
to bohot saare log aapki madad karne ke liye ready hote

hain.

Python Kyu Seekhein?

e Beginner-Friendly: Agar aap programming me naye
hain, to Python seekhna sabse best hai. Ye easy aur

logical hai.

e Job Opportunities: Python developers ki demand har field
me barh rahi hai, aur iski salaries bhi achhi hoti hain.

e Automation: Aap boring aur repetitive kaam automate
kar sakte hain Python se.

e Projects Banane Ke Liye Best: Chhoti apps se lekar bade
Al projects tak, Python har tarah ke projects ke liye
perfect hai.

Python Ki Features

e Dynamic Typing: Variables ko declare karne ki zarurat
nahi hoti. Example:

X =10 # Python automatically samajhta hai k x ek integer hai.

e Libraries Ka Treasure: Python ke paas 140,000+ libraries
hain jo alag-alag kaam ke liye use hoti hain, jaise:
o NumPy aur Pandas: Data analysis ke liye.
o Matplotlib aur Seaborn: Data visualization ke liye.
o TensorFlow aur PyTorch: Machine Learning ke liye.
e Integration: Python doosri languages (C, C++, Java) aur
tools ke saath easily integrate ho jata hai.

Python Ki Features

Python ka future bohot bright hai! Al, Data Science, aur Web
Development jese fields me iska istemal barhta ja raha hai.
Beginners aur professionals dono ke liye ye ek ideal
language hai.

Ek Simple Python Example

Aayiye ek chhota sa program likhte hain jo numbers ka sum
calculate kare:

Es program ko dekh kar ghabraiye mat ye just ek example hai
Do numbers ka sum calculate karne ka program

numl = int(input("Enter first number: "))

num?2 = int(input('Enter second number: "))

sum = numl + num?2

orint("Sum of’, num], "and’, numz, "is", sum)
Es program ko aagy mazeed tafseel say samjhay gay

Conclusion

Python ek all-rounder language hai jo easy aur powerful hai.
Agar aapko programming seekhni hai ya career banana
hai, to Python ek perfect start hai. Ab der kis baat ki? Aqj hi
Python seekhna shuru karein aur naye opportunities explore
karein! &

The full lesson is now available on the Needi Developer
YouTube channel.

Installing Python and VS Code

Python aur VS Code install karna programming ki journey ka
pehla aur important step hai. Aayiye step-by-step process
ko samajhte hain:

Step 1. Python Install Karna

Python ko install karna bohat simple hai es mai koi rocket
science nahi hai, bas neeche waly steps ko follow karein:

1. Python Website Visit Karein

e Python ki official website open karein:
https://www.python.org.

2. Download Python

e Website par "‘Download Python" ka button dikhai degq, jo
aapke system ke hisaab se version suggest karega
(Windows, Mac, ya Linux).

e Tip: Hamesha latest stable version download karein.

3. Installer Run Karein

e Python installer file ko open karein.

»

Windows me es
tarah ki file hogi us
ko run kary

https://www.python.org/

4. Add Python to PATH ([mportant)

e Installer shuru karte hi ek checkbox dikhai dega: "Add
Python to PATH".
Is box ko zaroor check karein, warna baad me manuadl
configuration karna padega.

H. Install Karna

e Customize Installation ya Install Now ka option dikhai
dega. Beginners ke liye “Install Now" par click karna best
hai.

e Install hone ke baad "Close” par click karein.

Step 2: Python Installation Verify Karna

Python install hone ke baad check karein ke sab kuch theek
se kaam kar raha hai ya nahi.

1. Command Prompt Open Karein (Windows)

e Windows Key + R press karein, aur “cmd” type karein.

2. Python Version Check Karein

e Command prompt me type karein:

python --version

e Agar output me Python ka version (Python 3.12.6) dikhai
de ya es say zyadaq, to iska matlab installation sahi hai.

3. Python REPL Test Karein

e Command prompt me type karein:

e Aapko Python ka interactive shell dikhai dega, jaha aap
code likh sakte hain.

Step 3: VS Code Install Karna

VS Code ek powerful aur lightweight code editor hai jo

Python ke liye perfect hai. Installation process neeche diya
gaya hai:

1. VS Code Website Visit Karein

e Official welsite open karein:
https://code.visualstudio.com.

2. Download VS Code

e "Download for Windows/Mac/Linux" ka button dikhai

dega. Apne operating system ke hisaab se installer
download karein.

3. Installer Run Karein

e Download hone ke baad installer file ko open karein.

4. Installation Settings Configure Karein

e Terms and Conditions accept karein.
e Recommended:

e "Add to PATH" option check karein.
e ‘Create Desktop Shortcut’ bhi select karein.
e Behtar ye hai kay sary Checkboxes hi click kr dein

https://code.visualstudio.com/

B. Install Karein

e Install button par click karein aur complete hone ke baad
"Finish” karein.

Step 4: Python Environment VS Code Me Set Karna

Python aur VS Code ko connect karna important hai. Follow
these steps:

. Open VS Code

e Desktop shortcut ya start menu se VS Code open karein.

2. Python Extension Install Karein

e Extensions Icon (left side bar me box icon) par click
karein.

e Search Bar me Python type karein.

e Official Microsoft Python extension ko install karein.

3. Python Interpreter Select Karein

e Bottom-right corner me "Select Interpreter” ka option
dikhai dega.

e Apne installed Python version ko select karein
(Python 3.12) ya es say above jo apny latest install kiya.

4. Test Python Script in VS Code

e Ek new file create karein aur extension .py save karein,
jaise:

e Isme likhein:

e File ko run karne ke liye Run Button ya Ctrl + F5 press
karein.

Common Issues and Solutions

1. Python Not Recognized Error

e Aapne "Add Python to PATH" option miss kar diya hoga.
e Solution: PATH environment variable manually configure
karein ya Python reinstall karein.

2. VS Code Me Python Run Nahi Ho Raha

e Check karein ke Python interpreter sahi select hua hai ya
nahi.

e Solution: Bottom bar me interpreter select karein.

Conclusion

Ab aapke system me Python aur VS Code install hai, aur
aap ready hain apna pehla program likhne ke liye!

Yahi se aapki Python journey shuru hoti hai. Practice karte
rahiye aur naye concepts explore karein.

The full lesson is now available on the Needi Developer
YouTube channel.

Writing and Running Python Scripts.

Python ki scripts likhnne aur run karne ka process bohot
simple aur user-friendly hai. Aayiye step-by-step esko
samajhte hain:

Step 1: Python Script Kya Hai?

Python script ek text file hoti hai jisme Python code likha
jata hai. Is file ka extension .py hota hai, jaise:

Python script ko aap multiple ways se likh aur run kar sakte
hain.

Step 2: Python Script Likhnay Ke Tools

Python script likhne ke liye aapko ek code editor ya IDE
chahiye.

Recommended Tools:
1.VS Code (Visual Studio Code): Lightweight aur

beginner-friendly.

2.PyCharm: Thora heavy hai low-end pc ky liye
recommend nahi hai or use karna thora sa complex
hai.

3.IDLE: Python ke saath default aata hai.

4.Notepad++: Simple text editor.

5.Jupyter Notebook: Data science aur

experimentation ke liye best.

Step 3: Python Script Likhnnay Ka Tareeqa

1. VS Code Me Script Likhein

e File Create Karein:
e VS Code open karein aur ek nayi file banayein.
* File ko .py extension ke saath save karein. Example:

e Code Likhein:
e File me apna Python code likhein.

Example:

2. IDLE Me Script Likhein

e IDLE open karein aur File New File select karein.
e Code likhne ke baad file ko .py extension ke saath save

karein.

Step 4: Python Script Ko Run Karna

Python script ko run karne ke liye aapke system me Python
installed hona chahiye.

Agar apny uper waly steps follow kiye hai to apkay
computer me python install ho gaya hai.

1. Command Prompt (Windows) Ya Terminal
(Mac/Linux) Se Script Run Karna

e Apni .py file ka path find karein.

e Example: Agar file C:\PythonScripts \main.py me hai, to
path yahi hoga.

e Terminal/Command Prompt open karein.
e Ye command type karein

python C:\PythonScripts \ main.py

Agar output me Hello World! print ho, to aapka code
sahi run ho gaya.

2. VS Code Me Script Run Karna

e Apni Python file open karein.

e Top bar me "Run” button dikhai dega, uspe click karein
ya Ctrl + F5 press karein.

e Output VS Code ke terminal me dikhai dega.

3. IDLE Me Script Run Karna

e IDLE me apni .py file open karein.
e Press F5 ya Run Run Module select karein.
e Output IDLE shell me dikhai dega.

Conclusion

Python scripts likhna aur run karna ek beginner-
friendly process hai.

The full lesson is now available on the Needi Developer
YouTube channel.

Python Syntax and Comments

1. Python Syntax

Python me syntax ek set of rules hota hai jo ye define karta
hai ki program ka code kaise likhna hai aur kaise execute
hoga. Agar syntax ka dhyan nahi diya gaya, to Python
interpreter error throw karega.

Python ka syntax simple aur beginner-friendly hai. Iski
readability isko dusri languages se alag banati hai.
Yahaan kuch basic syntax rules hain:

1. Indentation:

Python indentation (spaces) ka use karta hai block of code
ko define karne ke liye. Ye dusri languages jese {} ya ; ke
jagah use hota hai.

Example:

if True:

print() #proper indentation

Second line me print sy pehlay jo space hai use indent
kehtay hai.

2. Case Sensitivity:

Python mein variables aur keywords case-sensitive hote
hain.

Example:

my_var =
My_var =

print(my_var) #0utput: 5
print(My_var) #Output: 10

3. Statements:

Har statement ek alag line me likha jata hai. Agar ek hi line
me multiple statements likhne hon, to ; (semicolon) ka use
hota hai.

Example:
print();print() #multiple statements in one line

4. Keywords:

Python me kuch reserved words hain jinko as a variable ya
function name use nahi kar sakte.

Example: if, else, for.

2. Python Comments

Comments ko code me documentation ke liye use kiya
jata hai. Ye code ka wo part hote hain jo execute nahi hota.
Comments ka purpose code ko readable aur
understandable banana hai.

Agar ap apni help kay liye koi note wagera kisi
block-of-code par Igana chahty hai to comments ki help
say lga saktay hai

Types of Comments:

1. Single-Line and inline Comments:

L

ye Gray Color wall
Example: Lines Comments hal.

H# symbol se start hote hain.

This is a single line comment

print() # This is an inline comment

2. Multi-Line Comments:

Triple quotes (™ or ") ka use karke multi-line comments

likhe ja sakte hain.

Example:

This is a multi-line comment. It spans multiple lines.

print()

Why Use Comments?

1. Code Explanation:

Complex code ko explain karne ke liye.

Check is a number is even
number =
If number %

print(

2. Code Debugging:

Specific lines ko temporarily disable karne ke liye.

Example:
print("This won't execute")

print()

3. Documentation:

Code ka purpose aur logic batane ke liye helpful.

Chaliye kuch funny example dekhtay hai:

This program checks if Batman is hungry or not
Is_hungry = True
ifis_hungry:

print("Batman need snacks”)
else:
print("Batman is fulll")

Conclusion:

Python syntax aur comments code ko clean aur
understandable banate hain. Indentation ka dhyan
rakhein, aur comments ka use karke apna code aur
readable banayen.

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

Python me comment likhne ka sahi tareeqga kya hai?

a) // Ye ek comment hai
b) # Ye ek comment hai
c) [* Ye ek comment hai */

d) Inme se koi nahi

2. True or False

Python case-sensitive hota hai, matlab
Var aur var ko ek hi variable maana jata hai.

Python me blocks of code define karne ke liye
indentation zaroori hai.

3. Fill in the Blank

Python me comments likhne ke liye
use hota hai.

4. |dentify the Error

Niche diye gaye code me kya galat hai?

symbol ka

ANnswers :

1.(b)

2.(False) (True)

3.(#)

4.print statement indented nahi hai.

Lassorn comolata—craat joo!

Lesson 2: Variables and Data Types

Variables

Variables Python me aise containers hote hain jisme hum
data store karte hain, just like a jar, jis me hum cheezein
store karte hain. Har jar ka apna naam hota hai (variable

name), aur isme hum alag alag type ka data rakh sakte
hain.

Example:

Sochiye aap ek shop me kaam kar rahe hain aur aapko
alag alag cheezon ke price save karne hain. Har cheez ke
price ko ek variable me store karte hain:

apple_price =
lbanana_price =
mango_price =

print(,apple_price)
print(Janana_price)
print(,mango_price)

Output:

Apple price is 100
Banana price is 50

Mango price is 170

Rules for Naming Variables:

e Naam letter (a-z, A-Z) ya underscore (_) se shuru honao
chahiye.

e Noam me numbers ad sakte hain, lekin pehle position
pe nahi jaise: (pricel valid hai, 1price invalid hai).

e Variables case-sensitive hote hain Jaise: (age aur Age
alag hain).

Fixed Values

Constants wo hoti hain jo kabhi change nahi hoti, jaise
hamari daily life me ek kilogram = 1000 grams hota hai.
Python me constants ko ALL_CAPS me likha jata hai.

Example:
Sochiye, aap ek calculator bana rahe hain aur Pl ka value

fix rakhna chahte hain:

Pl = # Fixed Value of P
GRAVITY = # Acceleration due to gravity

circle_radius =
area = Pl * (circle_radius ** 2)

orint (, areq)

Although Python me aap constants ko change kar sakte
hain, lekin aapko achi coding practice ke liye unhe
badalne nahi chahiye.

Reserved Words

Keywords Python ke special words hote hain jo
programming ke rules define karte hain. Inka use variable

names ke liye nahi kar sakte.

Example:
Jaise traffic signals me STOP ka matlab hamesha rukna

hota hai, waise hi Python ke keywords ka specific meaning
hota hai.

Some Common Keywords:
if, else, for, while, def, return, import, etc.

Keywords in Action:

if 10 > 5: # if is a keyword

print()
else: # else is adlso a keyword

orint ()

Conclusion

Variables, constants, aur keywords Python ke foundation
hain. Variables data ko handle karne me madad karte
hain, constants un values ko fix rakhte hain jo change nahi

hoti, aur keywords programming ka basic syntax banate
hain.

The full lesson is now available on the Needi Developer
YouTube channel.

Data Types

Python me har data ka ek type hota hai jo define karta hai
ke wo data kya hai aur uske sath kya operations kiye ja
sakte hain. Data types ki madad se aap Python ko batate
ho ke kisi value ko kaise handle karna hai.

Definition:
Integer wo numbers hote hain jo bina decimal ke hote
hain, jaise 1, =5, 100, etc.

Example:

age =
apples = -
distance =

orint (age)
print(,apples)
orint (distance)

2. Float (Decimal Numbers)

Definition:
Float wo numbers hote hain jo decimal ke sath hote hain,
jaise 3.14, -2.5, 0.0, etc.

Example:

Pl =
temperature =
height =

orint("PI:", PI)
print(, temperature)
print(, height)

Definition:
String wo data type hai jo text ya characters store karta
hai. Strings hamesha quotation marks ("' ya **) me likhe

jate hain.

Example:

name =
greeting =
City =

orint(, hname)

print(, greeting)
print(, City)

4. Boolean (bool)

Definition:
Boolean sirf do values store karta hai: True ya False.

Example:

IS_raining = True
has_license = False

print(,is_raining)
orint(, has_license)

4. Boolean (bool)

Definition:
None ka matlab hai kuch bhi nahi. Jab aapko ek variable
banana ho lekin abhi koi value assign nahi karni ho, to aap

None use karte hain.

Example:

future_plan = None

print(, future_plan)

Quick Comparison of Data Types

Data Type Example Use Case
int 10, -5, 100 Age, quantity, counters.
float 3.14,-2.5 Temperature, height, area.
str Hello Names, addresses, messages.
bool True, False Status checks, conditions.
None None Placeholder, empty values.

Conclusion

e Int: For whole numbers.

e float: For decimal numbers.
o str: For text data.

e bool: For true/false logic.
e None: For 'no value yet.’

The full lesson is now available on the Needi Developer
YouTube channel.

Type Conversion

Type conversion ka matlab hai ek data type ko doosre
data type me badalna. Python me aap easily ek type se

doosre type me convert kar sakte ho, is process ko type
casting bhi kehte hain.

Type conversion do tarah ka hota hai:

1. Implicit Type Conversion

Python khud se (automatically) ek data type ko doosre
me convert kar deta hai.

2. Explicit Type Conversion

Programmer manually ek data type ko doosre me
badalta hai.

1. Implicit Type Conversion

Yeh tab hota hai jab Python khud data type ko convert
karta hai bina kisi error ke.

Python yeh sirf un situations me karta hai jaha koi data
loss na ho.

Example:

Implicit Conversion
num_int = # Integer
num_float = # Float
result = num_int + num_float

print(result) #75
print(, type(result)) # Float

Explanation:

e 5 ek integer hai, aur 2.5 ek float hai.

e Jab in dono ko add kiya gaya, Python ne integer 5 ko

automatically float me convert kar diya 5.0 taake
calculation smooth ho.

2. Explicit Type Conversion

Is process me programmer khud se type conversion karta
hai using built-in functions.

Common Type Conversion Functions:

Function Use Example
int() Kisi value ko integer me badalna int(3.5) 3
float() Kisi value ko float me badalna float(5) 5.0
str() Kisi value ko string me badalna str(5) "B
bool() Kisi value ko boolean me badalna bool(1) True

Converting to Integer

e Float ya string ko integer me badalne ke liye int()
function use hota hai.

e Decimal wali value truncate (remove) ho jati hai.
Example:

num _float =
NnumM _str =

Convert to int
int_from_float = int(hum_float) # 4
int_from_str = int(hum_str) #10

orint(int_from_float, int_from_str)

Converting to Integer

e Kisi bhi value ko string me convert karne ke liye str()

use hota hai.
Example:

num =

o

Convert to string
str_num = str(hum)

str_pi = str(pi)
print(Cstr_num +
print(, str_pi +

Converting to Boolean

e Kisi value ko boolean me badalne ke liye bool() use
hota hai.

e Python me, kuch values hamesha False hoti hain:
e 0
e None

e Empty values: ™, [], {}. ()
e Baaki sab True hoti hain.
Example:

vall =
val2 =
val3 =

Convert to boolean
booll = bool(vall) # False
bool2 = bool(val2) # True
bool3 = bool(val3) # False

print(booll, bool2, bool3)

Conclusion

e Implicit conversion automatic hoti hai jab data loss ka
kol risk na ho.

e Explicit conversion me aapko khud se data type convert
karna padta hai.
e Python ke built-in functions jaise int(), float(), str(), aur
bool() is process ko simple banate hain.
Type conversion har programming task me zaroori hoti hai,

especially jab user input ya data processing ke waqt data
type consistent rakhna ho.

The full lesson is now available on the Needi Developer
YouTube channel.

Input and Output

Python me input aur output handle karne ke liye built-in
functions hote hain.

e Input: User se data lena.
e Output: Screen par data dikhana.

Output print()

print() function ka use output ko screen par display karne
ke liye hota hai.

Syntax:

print(*objects, sep="', end="\n, file=sys.stdout, flush=False)

e *objects: Multiple items ko output kar sakte hain.

e sep: Objects ke beech separator, default .

e end: Line end hone ke baad kya likhna hai, default "\ n'.
e file: Jaha output chahiye (default screen).

e flush: Output ko turant dikhane ke liye.

Example: Basic Usage

Simple print statement
print() # Output: Hello, Python!

Printing multiple items

name =

age =

print(_name, ,age) # Output: Name: Ali Age: 20

Using custom separators and endings
orint(is" ,sep="-",end="1") # Output: Python-is-fun!

Input input()

input() function ka use user se data lene ke liye hota hai.
Jo bhi user type karta hai, wo string format me return hota
hai.

Syntax:

input(prompt)

prompt: User ko message ya instruction dene ke liye.

Example: Basic Input

Asking the user's name
name = input(

orint (~name + 1"

Converting Input

Input hamesha string hota hai, lekin agar aapko numlber
ya kisi aur type ka data chahiye ho, to aapko explicit type
conversion karna padega.

Example: Integer Input

Taking two numbers and adding them
numl = int(input()) # Convert input to integer
num?2 = int(input()) # Convert input to integer

result = numl + num?2
print(, result)

Example: Float Input

height = float(input(

orint (, height,

Conclusion

e print() is used for displaying output, and you can style
It using f-strings or separators.

e input() allows you to get user data, but remember to
convert it to the desired type for calculations.

Input and output are essential tools for creating interactive
programs.

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

Create a Python program that acts as a simple calculator.
The program should:

e Take two numbers from the user.

e Perform the following operations using variables:
addition, subtraction, multiplication, and division.

e Display the results for each operation.

Lesson 3: Strings

Strings Python me text ko represent karne ke liye use hote
hain. Strings ek sequence of characters ka collection hote
hain jo quotes (single ya double) ke andar likhe jate hain.

What is a String?

e A string ek sequence hoti hai, jo letters, digits, aur
specidl characters ka collection ho sakti hai.

e Strings ko single quotes ("), double quotes (™), yo
triple quotes (" or ") ke andar likha jata hai.

Example:

Single and double quotes
name =
greeting =

Triple quotes for multiline strings
multiline _string =

Creating Strings

1. Single Quotes:

single_quote_string =

2. Double Quotes:

double_quote_string =

3. Triple Quotes:

triple_quote_string =

1. String Indexing

Indexing ka use karke aap string ke kisi bhi individual
character ko access kar sakte hain.
Python me indexing 0 se start hoti hai.

Syntax:

string_name|index|

Examples:

text =
orint(text[0]) # Output: P (first character)
orint(text|5]) # Output: n (last character)

Negative Indexing:

Negative indexing string ke end se access karne ke liye hoti
hai.
text =

orint(text[-1]) # Output: n (last character)
orint(text[-6]) # Output: P (First character)

2. String Slicing

Slicing ka use string ke ek portion ya substring ko access
karne ke liye hota hai. Slicing ka syntax start index, end
index, aur step ko define karta hai.

Syntax:

string_name|start : end : step]

e start: Index jahan se slicing shuru hogi (included).

e end: Index jahan tak slicing chalegi (excluded).

e step: Har step me kithe characters skip karne hain
(optional).

Examples:

text =

Basic slicing
orint(text[0:6]) # Output: Python (characters 0 to 5)
orint(text[6:]) # Output: Programming (from index 6 to end)

Negative slicing
print(text[-11:-1]) # Output: Programmin

Using step
orint(text[0:12:2]) # Output: Pto rg (alternate characters)

Shortcut for Slicing:
e string[:]: Puri string return karega.

o string[:end]: Start se end tak substring.
o string[start:]: Start se end tak.
o string[::-1]: String ko reverse karega.

3. String Operations

Python me strings ke upar bahut saare useful operations
perform kar sakte hain.

Concatenation (Join Strings):

Strings ko + operator ka use karke joda ja sakta hai.

first_name =

last_name =

full_name = first_name + + last_name
orint(full_name) # Output: Needi Developer

Repetition:
Strings ko * operator ka use karke repeat karna.

greet =

print(greet * 3) # Output: Hi! Hi! Hi!

Membership Testing (in / notin):

Check karega ki string me koi substring hai ya nahi.

text = Hello World"

orint("Hello" in text) # Output: True
orint("Python" not in text) # Output: True

Summary:

e Indexing: Access individual characters of a string.
e Slicing: Extract portions of strings.
e Operations: Combine, repeat, or check substrings.

The full lesson is now available on the Needi Developer
YouTube channel.

String Methods

String methods Python me predefined functions hote hain
Jjo strings ke saath operations ko asaan banate hain. Inka
use karna bohot easy hota hai, aur ye commonly text
processing ke liye kaam aate hain.

Why String Methods Are Useful?

e Strings ke operations ko asaan aur efficient banate
hain.
e Real-world scenarios me, jaise user input ko clean

karna, email validation, aur text formatting ke liye kaam
aate hain.

Commonly Used String Methods

Here's a list of frequently used string methods with
examples:

1. lower() and upper()

e lower(): String ke saare characters ko lowercase me
convert karta hai.

 upper(): String ke saare characters ko uppercase me
convert karta hai.

Example:

text =
orint(textlower()) # Output: hello world

orint(text.upper()) # Output: HELLO WORLD

2. strip(), Istrip(), and rstrip()

o strip(): String ke start aur end ke extra spaces ko
remove karta hai.

e Istrip(): Sirf left side se spaces remove karta hai.

e rstrip(): Sirf right side se spaces remove karta hai.

Example:

text =" Python
print(text.strip()) # Output: "Python’

orint(text.strip()) # Output: "Python "
print(text.rstrip()) # Output:” Python"

3. replace()

Ek string ke andar kisi specific character ya substring ko
replace karne ke liye use hota hai.

Example:

text = | love Java’

print(text.replace('Java’, 'Python")) # Output: | love Python

4. find() and index()

e find(): Substring ka index return karta hai (agar
substring exist kare). Agar substring na mile to -1 return
karta hai.

e index(): Similar to find(), lekin agar substring na mile to
error throw karta hai.

Example:

text = "Python Programming’
print(text.find("Prog"’)) # Output: 7

orint(text.find("Java")) # Output: -1
print(textindex('Prog")) # Output: 7

5. startswith() and endswith()

o startswith(): Check karta hai agar string kisi specific
substring se shuru hoti hai.
e endswith(): Check karta hai agar string kisi specific

substring par end hoti hai.
Example:

text = Python is fun’

print(text.startswith('Python")) # Output: True
orint(textendswith('fun’)) # Output: True

6. split() and join()

e split(): String ko ek list me convert karta hai, ek specific
delimiter ke basis par.

e join(): List ke elements ko ek string me combine karta
hai, ek delimiter ke saath.

Example:

text = "apple,bananag,orange’
fruits = text.split(",") # Split by comma
orint(fruits) # Output: ['apple’, 'banand), 'orange’]

joined_text =" - "join(fruits)
print(joined_text) # Output: apple - banana - orange

7. count()

String me kisi specific character ya substring ki occurrence
count karta hai.

Example:

text = 'banana’

print(text.count('a")) # Output: 3

8. capitalize(), title(), and swapcase()

o capitalize(): Sirf pehle character ko uppercase banata
hai.

e title(): Har word ka first character uppercase banata
hai.

e swapcase(): Uppercase ko lowercase aur lowercase ko
uppercase me convert karta hai.

Example:

text = ‘python programming’
print(text.capitalize()) # Output: Python programming

orint(texttitle()) # Output: Python Programming
orint(textswapcase()) # Output: PYTHON PROGRAMMING

9. isalpha(), isdigit(), and isalnum()

e isalpha(): Check karta hai agar string sirf letters
contain karti hai.

e isdigit(): Check karta hai agar string sirf numbers
contain karti hai.

e isalnum(): Check karta hai agar string sirf letters aur
numibers contain karti hai.

Example:

text = Python123
orint(textisalpha()) # Output: False

print("123"isdigit()) # Output: True
orint(textisalnum()) # Output: True

summary:

String methods Python me kaafi powerful hain, aur unka
use karna simple hai. Ye methods har jagah useful hote
hain, chahe wo user input sanitize karna ho, text formatting
ho, ya strings me searching aur replacing karna ho.

The full lesson is now available on the Needi Developer
YouTube channel.

Escape Sequences

Escape sequences Python me special characters
represent karte hain jo directly print nahi kiye ja sakte. Inka
use karna bohot zaroori hota hai jab aapko strings ke
andar specific formatting ya special effects chahiye hote
hain.

What Are Escape Sequences?

e Escape sequences strings ke andar backslash (\) ke
saath likhe jaate hain.

e Ye Python ko batate hain ke agle character ko special
treat karna hai.

Why Use Escape Sequences?

e Strings me special characters (newline, tab, quotes) ko
iInclude karne ke liye.

e Format aur align karne ke liye.

e Specific symbols ya actions perform karne ke liye.

Common Escape Sequences

Escape Sequence Description Example Output
\n Newline (next line) Moves text to a new line
\t Horizontal Tab Adds a tab space
\ Single Quote Prints ' inside quotes
\" Double Quote Prints " inside quotes
\\ Backslash Prints \
\r Carriage Return Moves to the start of line
\b Backspace Removes one character

Examples of Escape Sequences

1. Newline (\n)

Ek new line create karta hai:

Example:

print(
Output:
Hello

World

2. Tab (\t)

Ek horizontal tab space add karta hai:

Example:

print(

Output:
Name: Needi

3. Single Quote (\") and Double Quote (\")

Single ya double quotes ko string ke andar include karne
ke liye:

Example:

) # Output: It's a sunny day

) # Output: She said, "Hello!"

4. Backslash (\ \)

String me ek backslash print karne ke liye:

Example:

orint()

Output: This is a backslash: \

5. Carriage Return (\r)

Carriage return text ko line ke start par le jata hai:

Example:

orint("Hello \ rworld")

Output: World

6. Backspace (\b)

Ek character ko erase karne ke liye:

Example:

orint("Helloo \ b!")

Output: Hello!

summary:

Escape sequences dre essential for controlling how text is
displayed in strings. Whether it's formatting output, adding

special symbols, or managing alignment, they make text
handling more powerful and flexible.

The full lesson is now available on the Needi Developer
YouTube channel.

f-Strings (Formatted Strings)

Python me f-strings string formatting ke liye use hoti hain.
Ye tool programming ko asaan aur zyada readable
banate hain.

What are f-Strings?

f-Strings (formatted strings) Python 3.6 me introduce hui
thi. Inka use strings me variables aur expressions directly
add karne ke liye hota hai.

Why use f-Strings?

e Simple Syntax: {} ka use karke string me variables ya
expressions insert karte hain.

e Readable Code: Zyada clean aur understandable hota
hai.

e Fast Performance: Purani methods (like % aur
format()) se zyada efficient hoti hai.

How to use f-Strings?

String se pehle f ya F lagayein aur curly braces {} ke andar
variable ya expression likhein.

Examples of f-Strings

1. Variables Add Karna

name =
age =

orint()
Output: My name is Naveed and | am 20 years old.

2. Expressions Use Karna

X=
y:

print(f'The sum of {x} and {y} is {x + y}.")
Output: The sum of 8 and 4 is 12.

3. Number Formatting

price =
print(f'Total price is {price:2f} rupees.")
Output: Total price is 1234.57 rupees.

4. Function Ke Saath Use Karna

def (num):
return num * num

print(f'The square of 5 is {square(5)}.")
Output: The square of 5 is 25.

The full lesson is now available on the Needi Developer
YouTube channel.

Docstrings (Documentation Strings)

Docstrings code ko document karne ke liye use hoti hain.
Ye tool programming ko asaan aur zyada readable

banate hain.

What are docstrings?

Docstrings Python ka ek feature hai jo functions, classes,
aur modules ko describe karne ke liye use hota hai. Ye
triple quotes ("™ "™ ya ™ ™) me likhe jaate hain.

Why use docstrings?

e Code ko Samajhne Me Asaani: Dusre developers ya

khud ke liye.
e Documentation Tools Me Useful: Docstrings

automatically documentation banate hain (using
help() function).

How to write docstrings?

1. Function Ke Liye Docstring

return

print(greet()
Output: Hello, Naveed!

Docstring Explain Kar Raha Hai:
e Function kya karta hai.
e Argument (input) kya hona chahiye.

2. Class Ke Liye Docstring

return x +y

3. Docstring Access Karna

Python ka help() function docstrings ko dekhne ke liye use
hota hai:

print(help(greet))

summary:
o f-Strings: Strings me variables aur expressions ko
asaani se include karte hain.

e Docstrings: Code ko describe karte hain aur uski
documentation banate hain.

INn dono tools ka use karne se code readable, clean, aur
efficient banta hai!

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

Task: String Manipulation Program

Write a Python program that takes a string input from the
user. Perform the following tasks:

e Convert the string to uppercase.

e Find the length of the string.

e Replace all spaces in the string with underscores (_).

, S L. auaaandd §)
Lasson comolats—cerazt oo

Lesson 4: Control Flow

If, elif, else Statements

Python me if, elif, else statements decision-making ke liye
use hote hain. Ye program ko allow karte hain ki woh alag-
alag conditions ke basis par alag-alag actions le.

Understanding If, Elif, Else

1. if Statement;

If ka use ek condition check karne ke liye hota hai. Agar
condition true ho, to code execute hota hai.

If condition:
code to execute

2. elif Statement (Else If):

Jab pehli if condition false ho, to elif ka use karte hain dusri
condition check karne ke liye.

elif another__condition:

code to execute

3. else Statement;

Jab if aur elif dono false ho, tab else ka code execute hota

hai.
else :
code to execute

Syntax of if, elif, else

If condition:
Block of code if condition is true
elif another_condition:
Block of code if elif condition is true
else:
Block of code if all above conditions are false

Examples of if, elif, else

1. Basic Example:

age =

If age «
orint (
elif age ==
orint (

else:
orint (

Output:

Congratulations! You are an adult now.

2. Multiple Example:

marks =

If marks >=
print(

elif marks >=
print(

elif marks >=
print(

else:

print(
Output:

How It Works: Key Points

e Python conditions use comparison operators like:«, >,

<= >= == =

e Code blocks under if, elif, else statements must be
indented (usually 4 spaces).

Comparison Operators name:
e ==: Equal to
e I=:Not equal to
e >: Greater then
e < |less then
e >=: Gredater then or equal to
e <=:|less then equal to

Examples for practice:

1. Weather Decision:
Aik aesa program jo ye btata hai k weather kesa hai:

temperature =

If temperature >
print(

elif temperature >=
print(

else:

print(

Output:

The weather is pleasant.

2. ATM Withdrawal:
Aik aesa program jo ye btata hai k es transaction ky bad

user ka balance ktna reh jai ga:

balance =
withdrawal =

if withdrawal > balance:
print("Insufficient balance.”)

elif withdrawal == balance:
print("Your account will be empty after this transaction.”)
else:
print(f"Transaction successfull Remaining balance: {balance - withdrawal}")

Output:

Transaction successfull Remaining balance: 2000

3. Traffic Light:
Aik aesa program jo ye btata hai k kis light ky on hony par

kya krna hai:
light = Red’

if light == Red":

print("Stop! Wait for the green light.")
elif light == Yellow

print("Get ready to go.")
else:

print("Go! Drive safely.")

Output:

Stop! Wait for the green light.

summary:

e if: Checks the first condition.

o elif: Adds additional conditions.

o else: Executes if all Conoslitions are false.
By mastering these statements, you can create programs
that make decisions and respond to different inputs!

The full lesson is now available on the Needi Developer
YouTube channel.

Python me loops ka use tab hota hai jab hume ek block of
code baar-baar repeat karna ho.
Do main loops hain:

e forloop

e while loop

1. For Loop

For loop ka use kisi sequence (list, tuple, string, ya range)
ko iterate karne ke liye hota hai.
Ye har element ko ek-ek karke uthata hai aur code ko

execute karta hai.
Syntax:

for variable in sequence:

code to execute

l: List Iterate Karna
fruits = |

for fruit in fruits:
orint(

Output:

| love apple!
| love bananadl
| love cherry!

2: Range ka Use Karna

foriin range(], 6):
print(

Output:

Number: 1
Number: 2

Number: 3
Number: 4
Number: b

2. While Loop

While loop ka use tab hota hai jab hume ek condition ke
basis par code baar-baar chalana ho. Jab tak condition
True hai, loop chalti raheqi.

Syntax:

while condition:;

code to execute

1: Basic While Loop

count =

while count <= 5;:
print()
count +=1 # Increment the count

Output:

Count: |
Count: 2
Count: 3
Count: 4
Count: b

2: Infinite Loop (Avoid Karna!)

while True:

orint () # Use ‘break’ to stop
break # Stops the loop

Differences Between For and While

Feature For Loop While Loop

Sequence

. . Condition-based
(list, string, range)

Use Case

Fixed number of Unknown number of
When to Use
iterations iterations
. Run until a condition is
Example Iterate over a list

false

Examples for practice:

l: Attendance Check:

Aik aesi For Loop jo students ko present print kary gi:

students = | ,

for student in students:
print(

Output:

Naveed is present.
Noor is present.

Shahzad is present.
Ahmed is present.
Ali is present.

Note:
ye program ek real attendance checker nahi hai ye just

For Loop ki practice ky liye hai.

2. Countdown Timer:

While Loop ky zariye ek timer:

timer =

while timer >

print(f'Time remaining: {timer} seconds")
timer -=

print("Time's up!")

Output:

Time remaining: 5 seconds
Time remaining: 4 seconds
Time remaining: 3 seconds

Time remaining: 2 seconds
Time remaining: 1 seconds
Time's up!

Note:

ye timer abhi foran hi chl pry ga es ko thik sy chlany ky liye
time Module ko use kar ky time.sleep(1) loop me Igai gy to
ek proper Countdown Timer bny ga.

Modules ko detail me Lesson 10 me seekhy gy.

summary:
e For Loop: Fixed iterations (loop over a list or range).
e While Loop: Runs until a condition is false.

Dono loops ko samajhne se aap repetitive tasks easily
handle kar sakte hain!

The full lesson is now available on the Needi Developer
YouTube channel.

Break, Continue, and Pass

Python me break, continue, aur pass special keywords
hain jo loops aur control flow ko modify karte hain.

Ye keywords hume loops aur conditions ko zyada flexible
aur controlable banane ka option dete hain.

. Break Statement

Break ka use loop ko turant (immediately) terminate karne
ke liye hota hai. Jab break execute hota hai, loop ka
execution wahi khnatam ho jata hai, chahe condition true
ho ya nahi.

Syntax:

for/while loop:

If condition:
break

1: Break in a While Loop

count =

while count <
if count ==
print(
break
print(count)
count +=

Output:

Loop stopped at count: 6

2: Break in a For Loop

for num in range(], 10):
If num == 5;
print("Stopping the loop!")

break
print(num)

Output:

Stopping the loop!

2. Continue Statement

Continue ka use kisi specific iteration ko skip karne ke liye
hota hai, lekin loop ke baaki iterations chalte hain. Ye
turant loop ke agle iteration par chala jata hai.

Syntax:

for/while loop:
If condition:
continue

1: Continue in a For Loop

for num in range(], 6):
If num == 3:
print("Skipping number 3")
continue
orint(num)

Skipping number 3
4
5

2: Continue in a While Loop

count =

while count <
count +=
If count ==
print(
continue
print(, count)

Output:

Count: |
Count: 2
Skipping count: 3
Count: 4
Count: b

3. Pass Statement

Pass ka use tab hota hai jab hume loop ya block of code
likhnna ho, lekin temporarily usse blank chodna ho. Ye kuch
nahi kartaq, sirf syntax error avoid karta hai.

Syntax:

If condition:

pass # Placeholder for future code

2: Pass in an Empty Function

def ():

pass # Function logic will be added later

1: PAss in a Loop

for num in range(], 6):
If num ==

pass # Placeholder for future code
print(num)

Output:

Comparison Between Break, Continue, and Pass

Keyword Purpose Effect
Loop ko turant Loop se bahar nikal jata
Break : .
stop kar deta hai hal
Continue Currgnt |terqt|or? Agli iteration pqr jJump
ko skip karta hal karta hal

Placeholder, kuch | Code ko temporarily blank

Pass nahi karta chhodta hai

summary:
e Break: Loop ko terminate karta hai.

e Continue: Current iteration ko skip karta hai.

e Pass: Placeholder, kuch nahi karta.
Inka use karke loops aur conditions ko efficiently manage
kar sakte hain!

The full lesson is now available on the Needi Developer
YouTube channel.

Shorthand If-Else

Python me shorthand if-else ka use tab hota hai jab aap
simple conditions ko ek hi line me likhna chahte ho. Ye
code ko concise aur readable banata hai.

1. Shorthand If

Agar ek hi condition hai aur uspar ek hi statement likhna
ho, to shorthand if ka use kar sakte hain.

Syntax:

statementl if condition else statement2

1: Simple Shorthand If

age =
if age >=18: print(

Output:

2. Shorthand If-Else

Agar if-else ka use ek hi line me karna ho, to shorthand
format ka use karte hain.

Syntax:

value if _true if condition else value _if false

2: Shorthand If-Else

age =
status = If age >=
print(status)

Output:

3. Nested Shorthand If-Else

Agar multiple conditions hain, to nested shorthand if-else
ka use kar sakte hain.

3: Nested Shorthand If-Else

marks =
result = If marks > else If marks > else

print(result)

Output:

Excellent

summary:
Shorthand if-else ka use karke aapka code short aur clean

ban jata hai. Ye sirf tab use karein jab conditions simple ho

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

ATM Simulation

Objective: Simulate a simple ATM machine with these
features:
1.Show a menu with the following options:
l.Check Balance
. Withdraw Money
i, Exit
2.Use if-elif-else to handle the options.
3.Use a while loop to keep the program running until the
user selects "Exit.’
4.Implement the following logic:
o Allow withdrawal only if the balance is sufficient.
o Use shorthand if-else to update the balance.
o Exit the loop when the user chooses "Exit.”

v — i = o 5)
Lassorn comolatg—cjrazt joo!

Lesson 5: Functions

Defining Functions and Return

Python mein functions aise code blocks hote hain jo ek
specific task perform karte hain. Functions ka use code ko
organize karne aur repeat karne se bachne ke liye hota
hai. Isse code zyada readable aur maintainable ban jata
hai.

Function Kya Hai?

Function ek block of code hota hai jo kisi specific kaam ko
perform karta hai. Jab bhi zarurat ho, aap us function ko
call kar sakte hain. Functions input le sakte hain, us input
ko process kar sakte hain, aur result return kar sakte hain.

Function Ko Define Kaise Karte Hain?

Python mein function define karne ke liye def keyword ka
use hota hai, aur phir function ka naam aur parentheses ()
liknna padta hai.

Syntax:

def (parameters):
Code ka block
return result # Optional

1: Simple Function

def ():
orint(

greet() # Function ko call kar rahe hain

Output:

Hello, welcome to Python Knight!

Function Mein Parameters

Aap function ko information dene ke liye parameters ka
use kar sakte hain.

2: Function with Parameters

def (name):
print()

greet_user(

Output:

Hello, Needi Developer!

Return Statement

return statement ka use function ke result ko wapas
bhejne ke liye hota hai. Jab aap kisi calculation ya
processing ke baad result ko function se bahar bhejna
chahte hain, tab aap return use karte hain.

3: Function with Return

def (a, b):
result=a+Db
return result

Function ko call karke result print karte hain
sum_result = add(5, 3)
print(, sum_result)

Output:

Why Use return?

Agar aapko function ke andar ki calculation ya result ko
kisi aur part of program mein use karna ho, to return
statement ke through wo value function ke bahar bhej
sakte hain.

summary:

e Function ko def keyword se define karte hain.
e Parameters function ko values dene ke liye use kiye
jaate hain.
e Return statement function ka result wapas bhejne ke
liye hota hai.
Is tarah se functions aapko apne code ko modular, clean,
aur reusable banane mein madad karte hain.

The full lesson is now available on the Needi Developer
YouTube channel.

Function Arguments

Python mein functions ke saath different types ke
arguments use kiye ja sakte hain. In arguments ko hum
default arguments, *args, aur **kwargs ke naam se
jaane hain. Ye aapke function ko zyada flexible aur

dynamic bana dete hain.

1. Default Arguments

Agar aap function define karte waqt kisi argument ko ek
default value de dete hain, to agar user wo argument pass
nahi kare, to wo default value use hoti hai.

Syntax:

def (parami=valuel, param2=value2):
Function body

Example:

def (name=):
print()

greet() # Output: Hello, Naveed!
greet() # Output: Hello, User!

Explanation:
Yahan, agar name argument ko user pass nahi karta to

default value “User” use hoti hai.

2. *args (Non-Keyword Variable Length Arguments)

*args ka use hum tab karte hain jab hum function ko
variable number of arguments dena chahte hain. args ek
tuple hota hai jo user ke diye hue extra arguments ko store

karta hai.
Syntax:

def (*args):

Function body

Example:

def (*args):
total =
for num in args:
total += num

return total

print(add_numbers(], 2, 3)) # Output: 6
print(add_numbers(10, 20, 30, 40)) # Output: 100

Explanation:

*args allow karta hai multiple numbers ko function mein
pass karne ko. Function ke andar hum un sabhi numbers
ko sum kar ke return kar rahe hain.

3. **kwargs (Keyword Variable Length Arguments)

**kwargs ka use tab hota hai jab hume function ko
multiple keyword arguments (key-value pairs) dene hote
hain. kwargs ek dictionary hota hai jo key-value pairs ko
store karta hai.

Syntax:

def (**kwargs):

Function body

Example:

def (**kwargs):
for key, value in kwargs.items():
print()

print_info(name="Ali", age=25, city=
Output:

name:; Ali

age: 25
city: Karachi

Explanation:

**kwargs allow karta hai aapko multiple keyword
arguments ko handle karne mein. Function ke andar hum
in key-value pairs ko print kar rahe hain.

Combining Default, *args, and **kwargs

Aap ek hi function mein default arguments, *args, aur
**kwargs ko combine kar sakte hain. Lekin, default
arguments ko hamesha sabse aakhri mein rakhna hota
hai.

Example:

def student_info(name, age=18, *subjects, **marks):
orint ()
print ()
orint (
print ()

Function ko call karte hain
student_info("Ali", 20, , , Math=85, Science=90)

Output:

Name: Ali
Age: 20

Subjects: ('Math', 'Science’)
Marks: {Math": 85, 'Science’: 90}

Explanation:
e hame ek required argument hai.
e age ek default argument hai, agar value pass nahi hoti
to 18 use hota.
e *subjects multiple subjects ko accept karta hai.
e **marks multiple subjects ke marks ko key-value pairs
ke roop mein accept karta hai.

summary:

e Default Arguments: Function ko default values dena
agar user kisi argument ko pass nahi karta.

e *args: Function ko variable number of non-keyword
arguments dena. Ye arguments tuple ke form mein
hote hain.

e **kwargs: Function ko variable number of keyword
arguments dend. Ye arguments dictionary ke form
mein hote hain.

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

Prime Number Check

Write a Python function to check whether a given number
IS prime or not. A prime number is a number greater than 1
that has no divisors other than 1 and itself.
Write a function is_prime() that:

1.Accepts an integer as input.

2.Returns True if the number is prime.

3.Returns False if the number is not prime.

Example Input and Output:

is_prime(5) # Output: True (5 is a prime number)
is_prime(10) # Output: False (10 is not a prime number)

Lesson 6: Data Structures

Lists Python mein ek data structure hain jo multiple items
ko ek variable mein store karne ki facility dete hain. Lists
kaafi flexible hoti hain aur inko hum asaan tareeqge se
modify kar sakte hain.

Aayein basics samajhte hain:

Basics of Lists

e Lists ko square brackets [] ke andar banaya jata hai.

e Har item ko comma, se separate karte hain.

e Lists mein koi bhi data type store ho sakta hai:
numbers, strings, aur even lists khud bhi.

e Lists mutable hoti hain, yani aap unke elements ko
badal sakte hain.

Examples:

List banani
numbers = [1, 2, 3, 4, 5]
fruits = | , ,
mixed = [], . 3.5, True]

List ko print karna

print(numbers) # [1,2, 3, 4, 5]
print(fruits) # [‘apple, 'bananad’, ‘cherry']
orint(mixed) # [1, 'hello), 3.5, True]

Indexing Iin Lists

e Lists ke har element ka ek index hota hai, jo 0 se start
hota hai.

e Negative indexing se hum list ke end se elements ko
access karte hain.

Examples:

fruits = | ,

Positive indexing

orint(fruits[0]) # ‘apple’ (pehla element)
orint(fruits[1]) # 'banana’ (dusra element)

Negative indexing
orint(fruits[-1]) # 'cherry (last element)
orint(fruits[-2]) # 'banana’ (dusra last element)

Slicing in Lists

e Slicing ka matlab hai list ke kisi part ko access karna.
e Syntax: list[start:end:step]
o start: Jahaan se slicing shuru karni hai (inclusive).
o end: Jahaan tak slicing karni hai (exclusive).
o step: Kitne gap ke saath elements ko pick karna hai.

Examples:

numbers = [10, 20, 30, 40, 50, 60]

Simple slicing

print(numbers|1:4]) # [20, 30, 40] (index 1 se 3 tak)
print(numbers[:3]) # [10, 20, 30] (start missing => 0 se start)
print(numbers|[2:]) # [30, 40, 50, 60| (end missing => last tak)

Step ke saath slicing

print(numbers[0:6:2]) # [10, 30, 50] (har 2nd element pick karo)
orint(numbers|:-1]) # |60, 50, 40, 30, 20, 10] (list reverse karna)

Methods in Lists

Python mein lists ke saath kaafi useful built-in methods

hote hain jo humein unhe manipulate karne ka tareeqga
dete hain.

Common List Methods:

l.append(): Ek naye element ko list ke end mein add
karta hai.

2.extend(): Ek list ke elements ko doosri list mein add
karta hai.

3.insert(): Kisi specific position par element ko add karta
hai.

4.remove(): Specific element ko remove karta hai.

5.pop(): Last element ko remove karta hai aur return
karta hai.

6.sort(): List ke elements ko ascending order mein
arrange karta hai.

7.reverse(): List ke elements ko reverse karta hai.

Examples of Methods:

fruits = ["apple’, "banana’, "cherry’]

append
fruits.append('orange”)
print(fruits) # [‘apple’, 'bananad 'cherry’, 'orange’]

insert
fruits.insert(l, 'grape”)
print(fruits) # [‘apple’, 'grape’, 'bananad) 'cherry’, 'orange’]

remove
fruits.remove('‘banana”)
print(fruits) # [‘apple’, 'grape’, ‘cherry’, 'orange’]

pop

last_item = fruits.pop()

print(last_item) # 'orange’

print(fruits) # [‘apple, 'grape’, ‘cherry']

reverse
fruits.reverse()
print(fruits) # ['cherry, 'grape’, ‘apple’]

The full lesson is now available on the Needi Developer
YouTube channel.

What are Tuples?

Tuples Python me ek data structure hain jo lists ki tarah
lagte hain, lekin ek major difference hota hai: Tuples
immutable hote hain, yani once aap tuple create kar lete
hain, uske values ko change nahi kar sakte. Tuples un data
ko store karne ke liye use hote hain jo constant renhna
chahiye.

e Tuples ko round brackets () ka use karke banaya jata

hai.
e Ye kisi bhi type ka data hold kar sakte hain (int, string,
float, etc.).

e Tuples mixed data types bhi store kar sakte hain.

How to Create Tuples

Ek tuple create karna
fruit_tuple = (,

Mixed data types ka tuple
mixed_tuple = (], ,3.14)

Empty tuple
empty_tuple = ()

Ek element ka tuple (comma zaruri hai)
single_element = (5,)
print(type(single_element)) # Output: <class 'tuple’>

Why Are Tuples Immutable?

Immutable ka matlab hai ki aap tuple ko banane ke baad
uska data change, add, ya remove nahi kar sakte. Ye
useful hota hai jab aapko apna data accidentally modify
hone se bachana ho.

Example: Immutability

fruit_tuple = (

Ye error dega
fruit_tuple|[1] =

TypekError: tuple’ object does not support item assignment

Accessing Tuple Elements

Tuple ke elements ko indexing ka use karke access kiya ja
sakta hai, bilkul lists ki tarah.

Example: Immutability

fruit_tuple = (,
Elements ko access karna

orint(fruit_tuple[0]) # Output: apple
orint(fruit_tuple[-1]) # Output: cherry

Use Case of Tuple

1. Fixed Data:

Jab aapko data ko change nahi karna ho, jaise:

e Week ke days: days = ("Monday", "Tuesday",
"Wednesday")

e RGB color codes: colors = (255, 0, 0)

2. Dictionary Keys:

Tuples ko dictionary ke keys ke roop me use kar sakte hain
(lists ko nahi).

coordinates = {(10, 20): (30, 40):

orint(coordinates[(10, 20)]) # Output: Point A

3. Multiple Values Return Karna:
Functions me tuples ka use multiple values return karne ke
liye hota hai.

def
return (10, 20)

X, y = get_coordinates()
orint(x, y) # Output: 10 20

Tuples ke Advantages

e Lists se fast hote hain kyunki immutable hain.

e Data ko safe rakhte hain accidental modification se.

e Jahan immutability ki zarurat ho, wahan use hote hain
(dictionary keys).

The full lesson is now available on the Needi Developer
YouTube channel.

Python me sets ek special data structure hain |o
unordered aur unique elements ko store karte hain. Sets
real-life examples jese classroom ke students ya fruits ki
list ko handle karne ke liye use hote hain, jahan duplicates
ko ignore karna zaroori hai.

e Sets ko curly brackets {} ya set() function ka use karke
banaya jata hai.

e Sets unordered hain, yani elements ka order important
nahi hota.

e Sets ke andar duplicates nahi ho sakte.

Example: Set Creation

Ek set create karna

fruits = { , : , }

orint(fruits)

Output: {'banand’, 'cherry’, 'apple’} (duplicates remove ho jayenge)
Empty set

empty_set = set() # {} ka matlab dictionary hota hai, na ki set

Set Operations

Sets ko use karke hum mathematical operations kar sakte

hain, jaise union, intersection, difference, symmetric
difference, etc.

1. Union

e Union ka matlab hai do sets ke sabhi unique elements
ko combine karna.
e Use the | operator ya union() method.

A
B

Union
result=A|B
orint(result) # Output: {1,2, 3, 4, 5}

Using method
result = A.union(B)
orint(result) # Output: {1,2, 3, 4, 5}

2. Intersection

e Intersection ka matlab hai do sets ke common
elements.
e Use the & operator ya intersection() method.

A
B

Intersection
result = A &B

orint(result) # Output: {3}

Using method
result = A.intersection(B)
orint(result) # Output: {3}

3. Difference

e Difference ka matlab hai ek set me jo elements hain,
ekin doosre set me nahi.
e Use the - operator ya difference() method.

A
B

Difference (A - B)
result=A-B
orint(result) # Output: {1, 2}

Using method
result = A.difference(B)
orint(result) # Output: {1, 2}

4. Symmmetric Difference

e Symmetric Difference ka matlab hai do sets ke unique
elements, jo sirf ek set me hain, lekin dono me nahi.

e Use the A operator ya symmetric_difference()
method.

Symmetric Difference
result =AAB

print(result) # Output: {1, 2, 4, 5}

Using method
result = A.symmetric_difference(B)
print(result) # Output: {1, 2, 4, 5}

Set Methods

Sets me kaafi useful methods hote hain jo humari life easy
banate hain.

Common Methods

1. add():

Ek naya element set me add karta hai.

fruits = { , }
fruits.add()

orint(fruits) # Output: {'apple’, 'bananad’, ‘cherry'}

2. remove():

Ek specific element ko remove karta hai (error deta hai
agar element na ho).

fruits = { , }
fruits.remove()
orint(fruits) # Output: {'‘apple'}

3. discard():

Ek element ko remove karta hai (error nahi deta agar
element na ho).

fruits = { , !
fruits.discard()
orint(fruits) # Output: {'apple’, 'banana’}

4. pop():
Randomly ek element ko remove karta hai (kyunki sets
unordered hote hain).

fruits = { , , |

fruits.pop()
print(fruits) # Output: {'banana), 'cherry'} (order random hoga)

5. clear():

Set ko completely empty karta hai.

fruits = { , ,

fruits.clear()
orint(fruits) # Output: set()

6. copy():

Ek naya set banata hai jo existing set ka copy hota hai.

fruits = { , !
new_fruits = fruits.copy()
orint(new_fruits) # Output: {'apple’, 'banana'}

Why Use Sets?

e Jab duplicates ko avoid karna ho.
e Jab fast membership testing chahiye (element exists in
set or not).
e Jab mathematical set operations jese union ya
iIntersection chahiye.
Sets simple aur efficient hain for unique data ke saath
kaam karna!

The full lesson is now available on the Needi Developer
YouTube channel.

Dictionaries

Dictionaries Python me ek unordered, mutable, aur
indexed data structure hain jo key-value pairs ko store
karte hain. Yeh ek bahut powerful tool hai data ko logically
organize karne ke liye, jese ek contact list ya students ki
records.

Dictionaries Basics

e Dictionary ko curly brackets {} ka use karke banate
hain.

e Keys unique hote hain aur values duplicate ho sakti
hain.

e Keys immutable hote hain (string, int, tuple), aur values
kuch bhi ho sakti hain (string, list, another dictionary).

Example: Set Creation

Basic dictionary
student = {

]

print(student) # Output: {'name" 'Naveed), 'age” 20, 'grade” 'A'}

Accessing Values in Dictionary

1. Using Keys

print(student| |) # Output: Naveed

2. Using get() Method

get() ka fayda hai agar key exist na kare, to error nahi
hotq, instead default value return hoti hai.

print(student.get()) # Output: 20

print(student.get(,).
Output: Not Available

1. Adding New Key-Value Pair

student['address"] = "Gujranwala”
print(student)

Output: {'name’ 'Naveed,, 'age” 20, 'grade” 'A’, ‘'address"
'Gujranwala'}

2. Updating Existing Value

student['age’] = 21

print(student)

Output: {'name" 'Naveed,, 'age" 21, 'grade” 'A", ‘address"
'Gujranwala'}

1. Using pop()

Ek specific key-value pair ko remove karta hai.

student.pop('grade”)
orint(student)
Output: {'name" 'Naveed,, 'age" 21, 'address" 'Gujranwala’}

2. Using popitem()

Randomly last inserted key-value pair ko remove karta
hai (Python 3.7+ me last element remove hota hai).

student.popitem()
orint(student)
Output: {'name’ 'Naveed,, 'age” 21’}

3. Using del

Kisi specific key ko delete karne ke liye.

del student|['age’]

print(student) # Output: {{name": 'Naveed'}

4. Using clear()

Dictionary ko completely empty karne ke liye.

student.clear()
orint(student) # Output: {}

Common Dictionary Methods

Method Description Example
keys () Returns all keys in dictionary student.keys() dict_keys(['name’,'age’])
values () Returns all values in student.values() dict_values(['Ali’, 20])

dictionary

items() tRueFt)LlJergs all key-value pairs as student.items() dict_items([('name’, ‘Ali’)])
Up date () Adds or updates key-value student.update({"grade": "A"})

pairs

Creates a shallow copy of the

copy() setemeny new_student = student.copy()

Why Use Dictionaries?

.Fast Lookups: Keys ki wajah se data ko quickly access
kar sakte hain.
2.Structured Data: Real-world data ko logically organize
karne ke liye perfect hain.
3.Flexible: Values me kuch bhi store kar sakte hain (list,
another dictionary).
Dictionaries are powerful and versatile, aur aapko har
practical project me inka use milega!

The full lesson is now available on the Needi Developer
YouTube channel.

Enumerate and Zip Functions

Python ki enumerate() aur zip() functions bohot useful
hain, jo looping aur data ko combine karne ke tasks ko
simple aur effective banate hain.

Enumerate Function

enumerate() ka use iterables (like lists, tuples, strings) ke
elements ke saath-saath unka index access karne ke liye
hota hai.

Syntax:

enumerate(iterable, start=0)

e iterable: Koi bhi iterable object (list, tuple, string).
e start: Optional. Ye specify karta hai index kis number se
shuru hoga (default is 0).

1: Basic Usage

fruits = | , ,]

for index, fruit in enumerate(fruits):
print()
Output:

Index: O, Fruit: apple
Index: 1, Fruit: banana
Index: 2, Fruit: cherry

2: Custom Start Index

fruits = | , ,]

for index, fruit in enumerate(fruits, start=1):
print()

Fruit 1: apple
Fruit 2: banana
Fruit 3: cherry

Zip Function

zip() ka use multiple iterables ko parallel combine karne
ke liye hota hai. Ye function tuples ka ek list banata hai,
jisme har tuple respective elements ko combine karta hai.

Syntax:

zip(iterablel, iterable?, ...)

1: Basic Usage

names = | ,
scores = [90, 85, 88]

for name, score in zip(names, scores):
print()

Output:

Naveed scored 90
Sara scored 8b
Fatima scored 88

2: Zipping Unequal Lengths

Agar iterables ke lengths unequal hain, zip() shorter
iterable ke length tak hi combine karega.

colors = |
shapes = | , :]

for color, shape in zip(colors, shapes):
print()

Output:

red circle
blue square

3: Unzipping

Agar zipped object ko separate karna ho, to zip(*zipped)
ka use karte hain.

zipped = [(, 90), (
names, scores = zip(*zipped)

orint(names) # ('Naveed', 'Sara, Fatima’)
orint(scores) # (90, 85, 88)

Difference Between Enumerate and Zip

Feature enumerate() zip()
Purpose Provides index and value | Combines multiple iterables
Input Single iterable Two or more iterables
Tuples with index and Tuples with combined
Output P P
value elements
summary:
e enumerate() helps you get index and value from an
iterable.
e zip() combines elements from multiple iterables into
tuples.

Dono functions looping ko zyada organized aur readable
banate hain.

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

Data Structures Puzzle

Create a program that performs the following tasks:
.You have two data structures:
o A list of students:
["Ali", "Naveed", "Sara”, "Zoya”, "Ali", "Sara"”]
o A tuple of their marks: (85, 90, 78, 88, 85, 78)
2.Perform these operations:
> Find unique students (remove duplicates).
o Combine students and marks into a dictionary
where names are keys, and marks are values
(for duplicate names, keep the latest mark).

v — i = o 5)
Lassorn comolatg—cjrazt joo!

Lesson 7: Error Handling

Introduction to Errors and Exceptions

Errors aur exceptions Python programming ka important
part hain. Ye humein apne code mein problems ko
samajhne aur handle karne mein madad karte hain.
Aayiye, inko asaan words mein samajhte hain.

What Are Errors?

Errors wo problems hain jo code ko chalne nahi deti. Jab
Python ko kuch aisa mile jo samajhne ya chalane layak na
ho, to user ko python ki trf say error mita hai.

Types of Errors:

1. Syntax Errors:

Jab Python ke rules tod diye jaate hain.
Example:

Output:

SyntaxError: EOL while scanning string literal

2. Runtime Errors:

Jab program chal raha hota hai aur tab issue hota hai.

Example:
result =10 / 0 # Zero se divide karne ki koshish
Output:

ZeroDivisionError: division by zero

What Are Exceptions?

Exceptions runtime errors hain jo program ko crash kiye
bina handle ki jaa sakti hain.

Example Without Exception Handling:

num = int(input()

orint()

Agar user number ki jagah text input karega, program crash
karega.

Output:

ValueError: invalid literal for int() with base 10

Why Handle Exceptions?

e Program ko crash hone se bachane ke liye.
e User-friendly experience dene ke liye.
e Unexpected situations ko handle karne ke liye.

The full lesson is now available on the Needi Developer
YouTube channel.

How to Handle Exceptions?

Python mein errors aur exceptions handle karne ke liye
try, except, aur finally blocks ka use hota hai. Ye blocks
program ko crash hone se bachate hain aur unexpected
errors ko properly handle karte hain. Aayiye, inko asaan
tarike se samajhte hain!

try Block

try block wo code contain karta hai jo execute karna hai,
lekin usmein koi error aane ka chance ho sakta hai.

Example:

try:
num = int(input()) # Risky code

print(

Agar try block mein koi error hoti hai, to code except block
mein chala jata hai.

except Block

except block tab execute hota hai jab try block mein koi
error occur hoti hai. Ye error handle karta hai aur user ko
friendly message provide karta hai.

Example:

try:
num = int(input()) # User se number lena

print() # Division by user input
except ValueError: # Agar user number na de (Valuekrror)
print()
except ZeroDivisionError: # Agar user O input kare

print()

Output Scenarios:

e User enters "abc™

Please enter a valid number.

e User enters '0":

You cannot divide by zero!

finally Block

finally block hamesha execute hota hai, chahe koi error
aaye ya nahi. Ye clean-up tasks ke liye use hota hai, jaise
file close karna, database connection terminate karna, etc.

Example:

try:
file = open("data.txt’, 'r') # File ko open karna
content = file.read()
print(content)

except FileNotFoundError: # Agar file exist nahi karti
print()

finally:
print() # Hamesha execute hoga
file.close() # File close karna

Output:
Agar file mil jaye:

(File content displayed)
Closing the file.

Agar file na mile:

File not found!
Closing the file.

Multiple except Block

Adp ek try block ke liye multiple except blocks use kar
sakte ho. Ye alag-alag errors ko handle karte hain.

Example:

try:
numl = int(input('Enter a number: "))
num?2 = int(input("Enter another number: "))
result = numl / num?2
print(f'Result: {result}")

except ValueError: # Agar invalid input ho

print("Please enter valid numbers.")

except ZeroDivisionError: # Agar zero se divide ho
print("Cannot divide by zero.")

finally:
print("Thank you for using the program.”)

Output Scenarios:
User enters valid numbers:

Result: (calculated result)
Thank you for using the program.

User enters invalid numbers:

Please enter valid numbers.
Thank you for using the program.

User divides by zero:

Cannot divide by zero.

Thank you for using the program.

Summary:

1.try block: Risky code jo error raise kar sakta hai.
2.except block: Error ko handle karta hai aur program ko
crash hone se bachata hai.
3.finally block: Clean-up tasks ko execute karta hai aur
hamesha run hota hai.
By using try, except, and finally, aap apne Python
programs ko error-proof aur user-friendly bana sakte ho.

The full lesson is now available on the Needi Developer
YouTube channel.

Raising Custom Errors

Python mein aap apne custom errors raise kar sakte ho
jab aapko lagta hai ki koi specific condition galat hai. Ye
feature program ko robust aur readable banata hai, kyunki
adp apne errors ko identify kar sakte ho aur proper error
messages provide kar sakte ho.

Why Raise Custom Errors?

e Jab kol specific logic fail ho.
e User ko meaningful error message dena ho.
e Program ko controlled way mein stop karna ho.

Example:

raise ExceptionType()

Imagine karo ek function hai jo kisi user ki age accept
karta hai. Lekin, agar age 0 se chhoti ya 150 se zyada ho, to
wo invalid hai.

1: Division by Zero Custom Error

def (a, b):
if b==0:
raise ZeroDivisionError(
returna [b

try:
result = divide(10, 0)
except ZeroDivisionError as e:

print()
Output:

Error: You cannot divide by zero!

2: Raising Custom Errors
Example:

def (age):
If age <
raise ValueError("Age cannot be negative!") # Custom error
elif age >
raise ValueError('Age cannot be more than 150!")
Custom error

else:
print(f'Your age is valid: {age}")

Test cases
try:
check_age(-5) # Invalid age
except ValueError as e:
orint(f'Error: {e}")

try:
check_age(200) # Invalid age
except Valuekrror as e:

orint(f'Error: {e}")

check_age(25) # Valid age

Output:

Error: Age cannot be negative!

Error: Age cannot be more than 150!
Your age is valid: 25

3: Custom Class for Errors

Python mein aap apne custom error classes bhi bana
sakte ho by inheriting from the Exception class.

Example:

class

pass

def (num):
If num <
raise NegativeNumberError(

print()

Test case

try:
check_number(-10)
except NegativeNumberError as e:

print()

Output:

Custom Error: Number cannot be negative!

Using assert for Error Raising

Python mein assert bhi use hota hai specific conditions ko
test karne ke liye. Agar condition fail ho, to error raise hoti
hai.

Example:

def (num):
assert num > 0,
print(

Test cases
check_positive(5) # Valid
check_positive(-3) # Raises AssertionError

Output:

Valid number: 5

AssertionError: Number must be positive!

Key Points to Remember:

1.Use raise to manually trigger an error.
2.Always provide meaningful error messages.
3.Create custom exceptions by inheriting from the
Exception class.
4.Combine try-except blocks with custom errors for
clean code.
Custom errors aapko program ko predictable aur user-
friendly banane mein help karte hain.

The full lesson is now available on the Needi Developer
YouTube channel.

Debugging Basics

Debugging ka matlab hota hai apne code ki errors ko
dhoondhna aur fix karna. Python debugging ke liye kai
tareeqge provide karta hai, jisme se print() debugging aur
pdb module sabse common aur effective hain.

1. print() Debugging

Yeh debugging ka sabse simple aur common tareeqga hai.
Aap code ke different parts mein print() statements add
karte ho taaki variables ki values aur flow ka pata chal
sake.
e Advantages:

o Simple aur quick.

o Beginners ke liye best.
Example:

def (0, b):
print() # Debugging
result=a+Db
print() # Debugging
return result

Calling the function
sum_result = calculate_sum(5, 3)

print()

Output:

a:b, b: 3
result; 8
Sum is: 8

When to Use print() Debugging?

e Jab aapko variable ki value check karni ho.
e Flow of execution samajhna ho.
e Small programs mein.

Limitations of print() Debugging

e Large programs mein clutter create kar deta hai.
e Temporary fixes ke liye theek hai, lekin permmanent
debugging ke liye nahi.

2. pdb (Python Debugger)

Python ka built-in pdb module ek interactive debugging
tool hai jo aapko code ko line-by-line run karke errors
dhoondhne deta hai.

How to Use pdb?

.Code mein import pdb likhein.

2.Debugging karne ke liye pdb.set_trace() ka use karein.

3.Program execution wahin stop hota hai jahan
pdb.set_trace() lagaya ho.

4.Interactive commands ka use karke debugging karein.

Example:

def (0, b):
import pdb; pdb.set_trace() # Debugging point
result=a*Db
return result

Calling the function
product = calculate_product(4, 5)

orint ()

Common pdb Commands:

Command Description
n Next line execute karne ke liye.
c Continue program execution.
q Quit the debugger.
P Variable ki value print karne ke liye.
I Current line aur uske aas-paas ka code dekhne ke liye.

pdb Example with Commands

def (g, b):
import pdb; pdb.set_trace() # Start debugging

result=a /b
return result

Call the function
result = divide_numbers(10, 2)

orint()

Output:

(Pdb) p a

10

(Pdb) p b

2

(Pdb) n

(Pdb) p result
5.0

(Pdb) c
Result: 5.0

3. Using Breakpoints in VS Code

Agar aap VS Code use kar rahe hain, to breakpoints
debugging ke liye aur bhi easy ho jaati hai.
1.Set a Breakpoint: Code ke kisi line pe click karke
breakpoint lagao.
2.Run in Debug Mode: "Run and Debug” option choose
karo.
3.Inspect Variables: Execution stop hoga aur aap
variables inspect kar sakte ho.

When to Use pdb?

e Jab program bada ho aur print() se debugging
mushkil lage.
e Jab aapko line-by-line execution inspect karna ho.

summary:
1.print() Debugging:
o Simple aur quick.
o Best for small issues.
2.pdb Debugger:
o Advanced debugging tool.
o Large programs ke liye best.
Don’t just fix errors—learn from them! Debugging is not just
a skill, it's an art.

P

Lesson 8: File Handling
Reading and Writing Files

File handling ka matlab hai files ko read, write, aur
manage karna. Python ek powerful system provide karta
hai files ke saath kaam karne ke liye. Ye concept real-world
tasks jese logs save karna, data read karna ya report
generate karna ke liye kaafi useful hai.

Why File Handling is Important?

e Data store karne ke liye.
e Logs maintain karne ke liye.
e Configuration files manage karne ke liye.

Opening a File

Python mein files ko open karne ke liye open() function use
hota hai.
Syntax:

Mode:

Append mode (add to the file).

Reading a File

File ko read karne ke liye open() function ke saath r mode
use hota hai.
Example:

Writing to a file

file = open(

file.write() # Overwrites the file
file.write()

file.close()

Appending to a file
file = open(
file.write(

file.close()

Reading and Writing Together

r+ mode allow karta hai ek hi file ko read aur write karne ke
liye.
Example:

file = open(")

content = file.read()

print(, content)

file.write(
file.close()

Using the with Statement

Python mein with statement ka use file ko automatically
close karne ke liye hota hai.
Example:

with open(,'r") as file:

content = file.read()
print(content) # No need to manually close

Common Errors in File Handling

1. File Not Found Error:

Jab file exist nahi karti:
Example:

file = open('r") # Will raise an error

Fix: Use try-except ya x mode to create the file.

2. Permission Error:

Jab file ke liye access deny ho.
Example:

file = open(,"W") # May raise an error

Conclusion:

1.File handling ka basic concept samajhna zaroori hai.
2.Use read(), write(), append() for basic operations.
3.Prefer with open() for safer file handling.

4.Use file handling for real-world tasks like data storage,
ogging, and report generation.

File handling is an essential skill for every Python
developer!

The full lesson is now available on the Needi Developer
YouTube channel.

Important Methods in File Handling

File handling mein read(), readlines(), aur write()
methods kaafi important hain. Ye methods file se data
read karne aur write karne ke liye use hote hain. Let’s
understand these methods step by step in an easy way.

1. read() Method

read() method pura file ka content ek string ke forr mein
return karta hai.

Example:

with open(,'r") as file:

content = file.read() # Reads the entire file content
print(content)

When to Use:
e Jab file ka sara data ek saath read karna ho.
e Best for small files.

Output:
If the file contains:

Hello, Python Knights!

Welcome to Python File Handling.

Output will be:

Hello, Python Knights!
Welcome to Python File Handling.

2. readlines() Method

readlines() method file ki har line ko ek list ke andar store
karta hai.

Example:

with open('r") as file:

lines = file.readlines() # Reads all lines into a list
orint(lines)

When to Use:
e Jab aapko file ki lines ko alag-alag process karna ho.

e Useful for looping through lines.
Output:

If the file contains:

Hello, Python Knights!

Welcome to Python File Handling.

Output will be:
[

Iterating Through Lines:

with open(,'r") as file:
lines = file.readlines()
for line in lines:

orint(line.strip())
Removes extra spaces or newline characters

3. write() Method

write() method file mein data likhne ke liye use hota hai.
Agar file already exist karti hai, toh content overwrite ho
jata hai.

Example:

with open(,"w") as file:
file.write(
file.write(

When to Use:
e Jab file mein naya content liknna ho.
e Note: Write mode purane content ko delete kar deta hai

Outputin File:

This is a new file content.

File handling is easy in Python!

Appending Content Using write()

Agar aapko existing file mein data add karna ho, toh a
mode ka use karen.

Example:

with open("a") as file:
file.write(

Outputin File:

This is a new file content.
File handling is easy in Python!
Appending a new line to the file.

Comparison of Methods

Method Description Best Use Case
read() Reads entire file as a string. | Small files.
readlines() | Reads all lines into a list. Line-by-line processing.
. Writes content to a file : .
write() . New files or overwriting.
(overwrites).

Conclusion:

e Use read() to get all data at once.

e Use readlines() to process file line-by-line.

e Use write() to save data into a file.

In Python, file handling is both simple and powerful,
making it easy to work with text data in real-world
applications.

The full lesson is now available on the Needi Developer
YouTube channel.

Understanding seek() and tell()

Functions in File Handling

In Python, seek() aur tell() functions ka use file ke andar
pointer ko control karne ke liye hota hai. Yeh functions tab
kaam aate hain jab hume file ke specific part ko read ya
write karna hota hai.

What is File Pointer?

Jab hum ek file open karte hain, file pointer ek cursor ki
tarah hota hai jo yeh batata hai ki agla read ya write
operation file ke kis position par hoga. By default, file
pointer file ke start me hota hai.

seek() Function

seek() ka use file pointer ko kisi specific position par move
karne ke liye hota hai.

Syntax:

file.seek(offset, whence)

o offset: Pointer ko kitne bytes move karna hai.
e whence: Reference point define karta hai:
o 0 (default): File ke start se count karna.
o 1. Current pointer position se count karna.
o 2: File ke end se count karna.

Pointer ko Move Karna

Example:

with open('r") as file;
file.seek(5) # Pointer ko 5th byte par move karo

content = fileread() # 5th byte ke baad read karo
orint(content)

Agar example.txt file me yeh content hai:

Hello, Python Knights!

Output hoga:

Last 5 Bytes Read Karna

Example:

with open('example.txt’, "rb") as file:
file.seek(-5, 2) # Move 5 bytes before the end of the file
content = file.read()
print(content.decode('utf-8'))

Decode the binary content to string

Output hoga:

Es example me rb es liye use kiya gaya kyu kay r file ko text
mode me kholta hai. Text mode me seek() function ka
behavior unreliable ho jata hai, kyunki text files line endings
ko normalize karte hain (\nvs \r\n), jo byte-level
positioning ko bigaad sakta hai.

Es liye seek(-5, 2) kaam nahi karega agar text mode hai,
kyunki yeh binary mode ke liye design hua hai.

Key Differences:

Aspect First Code (rb) Second Code (r)
Mode Binary Mode (rb) Text Mode (r)
Data Type Bytes String
Accurate Byte-Level May Fail (due to line-ending

seek() Behavior
0 v Positioning handling)

Requires .decode(‘utf-8')

. :
ncoding explicitly

Implicitly handled by Python

Binary files, precise

Use Case o
positioning

Text files with normal reading

tell() Function

tell() function current file pointer ki position batata hai (in
bytes).
Syntax:

Pointer Position Check Karna

with open(,'r") as file:

print()
fileread(6) # Pehle 6 bytes read karo

print(
Output:

Initial position: O
Position after reading 6 bytes: 6

how to use together seek() and tell() function

with open(,'r") as file:
file.seek(7) # Pointer ko 7th byte par move karo
print()
content = file.read(5) # Agle 5 bytes read karo
print()
print(

Key Points to Remember:

1.seek() ka use file pointer ko move karne ke liye hota hai.

2.tell() se current pointer ki position pata chalti hai.

3.Default whence value 0 hoti hai, jo file ke start ko refer
karta hai.

4.Pointer ko file ke data se aage le jaane par koi error nahi
hoga, but content read nahi hoga.

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

File-Based To-Do List Program

Ek simple program banaye jisme user apne tasks ko add,
view, aur delete kar sakta hai. Ye tasks file mein save
honge, taki program band hone ke baad bhi data safe
rahe.

Steps:

e Program user ko menu options de:
o Add a new task: Naya task add kare.
o View all tasks: Saare tasks dikhaye.
o Delete a task by number: Task number ke zariye
delete kare.
o Exit the program: Program ko band kare.
e File Handling:
o Tasks ek file (todo.txt) mein store kare.
o Jab program shuru ho, tab file se tasks read kare.
o Jab user koi action kare (add ya delete), tab file ko
update kare.

, — L. ma ol o)
Lassorn comolatas—crazt joo!

Lesson 9: Object-Oriented Programming

Classes and Objects

Python classes aur objects object-oriented programming
(0OOP) ka foundation hain. Iska use large aur complex code
ko manageable aur reusable banane ke liye hota hai.
Chaliye is concept ko simple aur asaan tareeqy say
samajhte hain.

Classes

Ek class ek blueprint ya template hai jisme aap define
karte ho ki ek object kaisa hoga aur usme kya properties
aur behaviors (attributes aur methods) honge.

Syntax:

class ;
Class attributes and methods defined here

pass

Ek object class ka ek real-world instance hai. Jab aap ek
class ka use karte ho to ek object banate ho, jo class ke
defined attributes aur methods ko follow karta hai.

Syntax for Object:

object_name = ClassName()

Example: Real-Life Analogy

Imagine karo ek class "Car’ hai. Isme aap define karte ho ki
har car ka ek color, model, aur speed hogi, aur wo drive aur
stop kar sakti hai.

Agar aap ek object banao is class kq, jaise "Honda" ya
"Toyota’, to wo sab class ke rules follow karte hain, lekin
unke attributes alag-alag ho sakte hain.

Python Example

Creating a Class and Object:

Define a class
class
Constructor to initialize properties
def (self, brand, color):
self.brand = brand # Object attribute
self.color = color # Object attribute

Method to display car details
def (self):

orint (

Create an object of the class

my_car = Car(:)

Access object attributes
print(my_car.brand) # Output: Toyota
print(my_car.color) # Output: Red

Call object method
my_car.show_details() # Output: Car Brand: Toyota, Color: Red

Key Points About Classes and Objects

1. Attributes:
o These are variables that store data related to the
object.

o In the example, brand and color are attributes.
2.Methods:

o These are functions defined inside a class that
describe the behavior of objects.

> In the example, show_details() is a method.
3.Constructor (_ _init_ _):

o A specidl method used to initialize an object when
it's created.

o Automatically called when an object is made.

Why Use Classes and Objects?

1.Reusability: Ek class ko multiple objects ke liye use kiya
ja sakta hai.

2.0rganization: Code ko structured aur readable banata
hai.

3.Encapsulation: Data aur methods ko ek saath rakhna.

4.Scalability: Large programs mein classes aur objects
ka use code ko scalable banata hai.

summary:

e Class: A template for creating objects.

e Object: An instance of a class with real values.

e Use __init__() to initialize objects.

e Methods define the behaviors of objects.
Real-world analogy se classes aur objects ko samajhna
easy ho jata hai. Jaise har car ek object hai jo ek Car class
ke rules follow karta hai.

The full lesson is now available on the Needi Developer
YouTube channel.

Constructors and Instance Methods

Python mein constructors(_ _init__) aur instance
methods object-oriented programming (OOP) ka
Important part hain. Ye dono concepts aapko classes aur
objects ko efficiently use karne mein madad karte hain.

Constructors (_ _init

Constructor ek special method hota hai jo class ka object
banate waqgt automatically call hota hai. Iska main kaam
object ko initialize karna (initialize karte waqgt values assign
karna) hota hai.
e __init__ method ko constructor kaha jata hai.
e Jab aap class ka object banate hain, ye method
automatically call hota hai.

Syntax:

class .
def (self, param], param2):

self.attributel = parami
self.attribute2 = param?2

Explanation:

e self. Ye ek reference hai jo object ko represent karta hai.
Jab bhi aap class ke andar kisi attribute ko access
karte hain, self ka use lazmi hota hai.

e __iInit__ method: Jab aap object create karte hain, ye
method automatically call hota hai aur isme diya gaya
data object ke attributes mein store ho jata hai.

Example:

class
def (self, brand, color):
self.brand = brand # Object ka attribute
self.color = color # Object ka attribute

Object create karte waqt constructor ko call kiya jaata hai
my_car = Car(,)

print(my_car.brand) # Output: Honda
print(my_car.color) # Output: Blue

Explanation:
e __init__() method ne brand aur color ko initialize
kiya, jab my_car ka object bana.
e Jab hum my_car.brand ya my_car.color ko access
karte hain, to wo object ke attributes se value le leta hai
jo constructor ne set ki thi.

Instance Methods

Instance methods wo methods hain jo object ke specific
data (attributes) ko modify ya access karne ke liye use
kiye jate hain. Ye methods class ke objects ke saath
interact karte hain.
e self parameter instance method ka hissa hota hai, jo
current object ko refer karta hai.
e Ye methods class ke objects ko modify ya unke saath
operations perform karte hain.
Syntax:

class ;
def (self):

Method ka body
PASS

Example:

class
def (self, name, age):
self.name = name
self.age = age

def (self):
print(

Object banate hain
personl = Person(, 20)

Instance method call karte hain
personl.greet()
Output: Hello, my name is Naveed and | am 20 years old.

Explanation:
e __init__ method ne name aur age ko initialize kiya.
e greet method ek instance method hai jo object ke
attributes (name aur age) ke saath kaam karta hai aur
user ko greet karta hai.

Instance Methods Example with Additional Attributes

Agar aapko object ke state ko modify karna ho, to instance
methods ka use karte hain.

class ;
def (self, owner, balance=0):
self.owner = owner
self.balance = balance

def (self, amount):
self.balance += amount

orint (

def (self, amount):
If self.balance >= amount:
self.balance -= amount
print (
else:

print (

Object banate hain
account = BankAccount(,

Instance methods ko call karte hain
account.deposit(500)

Output: Deposited 500. New balance: 1500
account.withdraw(200)

Output: Withdrew 200. Remaining balance: 1300
account.withdraw()

Output: Insufficient balance!

Explanation:
e deposit aur withdraw methods instance methods hain,
jo self.balance ko modify karte hain.
e Ye methods object ki state ko modify karte hain, jaise
balance ko update karna.

Key Points:

. __init__ Constructor:
o Class ka object banate waqgt automatically call
hota hai.
o Object ko initialize karta hai, attributes ko set karta
hai.
2.Instance Methods:
o Object ke attributes ke saath interact karte hain.
o self parameter ko use karke object ke state ko
modify karte hain.

Ssummary:
e Constructors (__init__) object create karte wagt data
ko initialize karne ke liye use hote hain.
e Instance Methods object ke attributes ke saath kaam
karte hain aur unko modify karte hain.
Is tarah se aap classes aur objects ko effectively use kar
sakte hain apne programs ko organize aur reusable
banane ke liye.

The full lesson is now available on the Needi Developer
YouTube channel.

Inheritance

Inheritance ek fundamental concept hai object-oriented
programming (OOP) ka, jo ek class ko doosri class ki
properties aur methods inherit karne ki permission deta
hai. Iska matlab hai, ek class doosri class ke functionality
ko use kar sakti hai bina usse dobara likhne ke.

What is Inheritance?

Inheritance ka matlab hai ki ek class (child class) dusri
class (parent class) ke properties aur methods ko inherit
(le leti hai). Iska fayda yeh hota hai ki hume baar-baar
wohi code likhne ki zarurat nahi hoti.

Types of Inheritance

e Single Inheritance: Ek child class ek hi parent class se
inherit karti hai.

e Multiple Inheritance: Ek child class do ya zyada parent
classes se inherit karti hai.

o Multilevel Inheritance: Ek class ek aur class se inherit
karti hai, aur woh class kisi teesri class se inherit karti
hai.

Ghabrany ki zaroort nahi hai chaliye es concept ko sab sy
asaan tareeqy or kuch real-life examples ky zariye clear
karty hai ©

Single Inheritance

Ek parent class ka saara code ek child class mein reuse
hota hai.

Example:

class ;
def (self):
orint (

Child Class

class (): # Dog inherits from Animal
def (self):

orint ()

Create object of child class

dog = Dog()
dog.speak() # Output: Animals make sounds..
dog.bark() # Output: Woof! Woof!

Explanation:
e Animal parent class hai, aur Dog child class hai.

e Dog class ne Animal class ke method speak() ko
inherit kiya.
e Dog class apne method bark() ko bhi define karti hai.
Another Example:

Base Class
class ;
def (self):
print(

Derived Class

class ():
def (self):

print(

Example Usage

car = Car()

car.start() # Output: Vehicle starts.
car.drive() # Output: Car is driving.

Explanation:
 Vehicle ek general concept hai (parent class).
e Car usi ka ek specific type hai jo general functionality
ke saath apni unigue functionality (drive) rakhta hai.

Multiple Inheritance

Child class do ya zyada parent classes ke methods aur
properties ko inherit karti hai.

Example:

H# Parent Class |
class ;
def (self):
orint(

H# Parent Class 2
class ;
def (self):
orint (

Child Class
class (Mother, Father):
def (self):

orint(

Create object of child class

child = Child()

child.care() # Output: Mother takes care.
child.protect() # Output: Father provides protection.
child.play() # Output: Child loves to play!

Explanation:
e Mother aur Father parent classes hain.
e Child in dono classes se inherit karta hai aur inka
functionality use karta hai.

Multilevel Inheritance

Ek class ek aur class se inherit karti hai, aur woh class kisi
aur class se inherit karti hai.

Example:

Base Class

class :
def info(self):
print("Vehicles are used for transportation.”)

Intermediate Class
class ():
def (self):
print("Car is a personal vehicle.")

Derived Class
class (Car):
def (self):
print("SportsCar is very fast!")

Create object of derived class

sports_car = SportsCar()

sports_car.info() # Output: Vehicles are used for
transportation.

sports_car.car_type() # Output: Car is a personal vehicle.
sports_car.speed() # Output: SportsCar is very fast!

Explanation:
e Vehicle base class hai, jo basic properties provide karti
hai.
e Car se Vehicle inherit karta hai, aur uske saath apna
method add karta hai.
e SportsCar se Car inherit karta hai, aur further apne
features add karta hai.

Chaliye Multilevel Inheritance ki ek or example dekhty hai
or es concept ko mazeed clear karty hai.

Chain of Specialization

Example: Company hierarchy, jaise ek "'Employee’, ek
"Manager’, aur ek "Senior Manager".

Base Class

class ;
def (self):
print(

Intermediate Class
class (
def (self):

print(

Derived Class

class (Manager):
def (self):

print(

Example Usage

senior_manager = SeniorManager()

senior_managerwork() # Output: Employee works.
senior_manager.manage() # Output: Manager oversees work.
senior_manager.strategy()

Output: Senior Manager develops strategies.

Explanation:
e Employee ka kaam hota hai kaam karna.
e Manager ka kaam hota hai kaam ka management.
e Senior Manager ka role hota hai strategy banana.

Key Features of Inheritance

e Code Reusability: Parent class ka code child class me
reuse hota hai.

o Extensibility: Child class apni functionality add kar
sakti hai.

e DRY Principle: 'Don't Repeat Yourself' kaam karta hai,
kyunki hume bar-bar code likhne ki zarurat nahi hoti.

summary:
e Single Inheritance: Ek class ek hi parent class se inherit

karti hai.
e Multiple Inheritance: Ek class do ya zyada parent
classes se inherit karti hai.
e Multilevel Inheritance: Ek class ek aur class se inherit
karti hai jo kisi teesri class se inherit karti hai.
Inheritance ka use karke aap apne programs ko modular
aur efficient bana sakte hain.

The full lesson is now available on the Needi Developer
YouTube channel.

Method Overriding

Method Overriding ka matlab hai ki agar ek derived class
(child class) apni parent class ke method ko apne hisaab
se redefine kare, toh parent class ka method "override’ ho
jata hai.

Yeh concept tab useful hota hai jab child class ka behavior
parent class se alag ho ya specific ho.

Key Points of Method Overriding

.Same Method Name: Child class ka method aur parent
class ke method ka naam same hota hai.

2.Polymorphism: Isse hum runtime par decide kar sakte
hain ki kaunsa method call karna hai (parent ya child).

3.Super() Function: Agar child class me redefine karte
waqt bhi parent class ka method use karna ho, toh
hum super() function ka use karte ho

Basic Method Overriding

Scenario: Ek parent class hai Animal, aur ek derived class
hai Dog. Hum chahte hain ki Dog class ka speak() method
alag kaam kare.

Example:

Parent Class
class ;
def (self):
orint (

Child Class

class ():
def (self):

orint

Example Usage
animal = Animal()

dog = Dog()

animal.speak() # Output: Animal makes a sound.
dog.speak() # Output: Dog barks.

Explanation:
e Parent class ka speak() method ek general behavior
define karta hai.
e Child class (Dog) ka speak() method specific behavior
define karta hai, jo parent method ko override karta hai.

Using super() Function

Scenario: Ek Vehicle class hai jo ek general start() method
define karti hai. Ek derived class Car apna alag kaam
karegi lekin parent ka start() method bhi call karegi.

Example:

Parent Class
class ;
def (self):
orint (

Child Class
class ():
def (self):
super().start() # Call parent class's start method

orint ()

Example Usage
car = Car()
car.start()

Output:

Vehicle is starting.

Car is now ready to drive.

Explanation:
e Child class (Car) ke start() method ne parent ka
start() method bhi use kiya using super().

Bank Account System

Scenario: Ek BankAccount parent class hai jo funds
deposit karne ka method provide karti hai. Ek derived class
SavingsAccount interest add karegi aur method ko
override karegi.

Example:

Parent Class
class ;
def (self, balance):
self.oalance = balance

def (self, amount):
self.balance += amount

print(

Child Class
class ():
def (self, amount):
super().deposit(amount) # Call parent method
iInterest = amount * #H 2% interest
self.balance += interest

print(

Example Usage
account = SavingsAccount(100)
account.deposit(50)

Output:

Deposited: $50. New balance: $150

Interest added: $1.0. New balance: $151.0

Explanation:
e SavingsAccount ka deposit method parent method ko
extend karta hai aur extra functionality (interest
calculation) add karta hai.

Advantages of Method Overriding:

e Specialized Behavior: Child class apna specific
behavior define kar sakti hai.

e Code Reusability: Parent class ke common methods
reuse ho jate hain.

e Flexibility: Runtime par hum decide kar sakte hain ki
kaunsa method call karna hai.

When to Use Method Overriding?

e Jab parent class ka behavior child class ke liye suitable
na ho.

e Jab functionality extend karni ho parent class ke
method ki.

e Jab runtime par alag behavior chahiye based on
object type.

Summary:

Method overriding inheritance ka ek powerful feature hai jo
classes ko customize karne ki flexibility deta hai. Isse hum
apne program ko modular aur easy-to-maintain bana
sakte hain!

The full lesson is now available on the Needi Developer
YouTube channel.

Class Methods vs Static Methods

Python me methods do main types ke ho sakte hain jo ek
class ke andar define kiye jaate hain:

.Class Methods

2.Static Methods
Dono hi methods class ke andar hote hain, lekin inka
purpose aur kaam alag hota hai.

Class Methods

e Definition: Ye methods class ke liye kaam karte hain,
na ki kisi particular object ke liye.

e How to Declare: Class methods ko @classmethod
decorator ke sath define karte hain.

e First Parameter. Ye methods apne first parameter ke
taur par cls accept karte hain, jo ki class ko represent
karta hai.

o Use Case:

o Class-level data ko access ya modify karna.
o Factory methods banane ke liye (alternative
constructors).
Example:

class
company_name =

def (self, name, salary):
self.name = name
self.salary = salary

@
def (cls, new_name):

cls.company_name = new_name

Usage
print(Employee.company_name) # Output: Needi Developer

Employee.change_company _name()
print(Employee.company_name) # Output: AuraOfSurety

Explanation:

e change_company_name ek class method hai jo cls
use karta hai class-level attribute ko modify karne ke
liye.

e |s method ka object se koi lena-dena nahi, sirf class ke
attributes ko change karta hai.

Static Methods

e Definition: Ye methods kisi bhi object ya class-level
data ko access nahi karte. Ye methods sirf class ke
andar logically related operations ke liye hote hain.

e How to Declare: Static methods ko @staticmethod
decorator ke sath define karte hain.

e First Parameter: Ye methods kisi parameter ko
automatically nahi accept karte (na self, na cls).

e Use Case:

o Helper ya utility functions banane ke liye jo class se
related hote hain, lekin kisi object ya class attribute
ko use nahi karte.

Example:

class

@
def (g, b):
returna + b

Usage
result = MathHelper.add _numbers(5, 10)
print(result) # Output: 15

Explanation:
e add_numbers ek static method hai jo input
parameters par kaam karta hai.
e |s method ka class ke attributes ya methods se koi
lena-dena nahi.

Static Methods

Feature Class Method Static Method
Decorator @classmethod @staticmethod
First Parameter cls (represents the class) None

Access to Class Data Yes No

Access to Object Data | No No

o ooy |ty or e

When to Use Class Methods and Static Methods?

e Class Methods:
o Jab hume class-level data ko manipulate karna ho.
o Jab hume ek alternative constructor banana ho jo
object creation ko simplify kare.
e Static Methods:
o Jab hume helper ya utility functions banane ho jo
class ke andar logically fit hote hain.
o Jab kisi operation me class ya object ka
involvement na ho.

summary:
e Class Methods: Class-level operations ke liye.
e Static Methods: Utility functions ke liye.
e Both: Code ko organize aur readable banate hain.

The full lesson is now available on the Needi Developer
YouTube channel.

Magic (Dunder) Methods

Magic methods, also called dunder methods (kyunki yeh
double underscores se surrounded hote hain), Python me
special methods hote hain jo apke objects ka behavior
customize karte hain. __str__ aur __repr__ inme se
common hain, aur yeh decide karte hain ke object ko
string me kaise represent kiya jaye.

e Purpose: Yeh object ki official ya "formal” string
representation provide karta hai. Mainly debugging aur
development ke liye use hota hai.

e Kab Call Hota Hai: Jab aap repr(object) use karte ho
ya object ko Python shell me directly print karte ho.

e Output Kaisa Hona Chahiye: Output clear aur
unambiguous hona chahiye, aur ideally aap eval() se
object ko recreate kar sako.

Example:

class
def (self, name, age):
self.name = name
self.age = age

def (self):
return

Usage
person = Person(wls)
orint(repr(person)) # Output: Person(name='Naveed’, age=20)

Explanation:
e __repr__ ek formal description deta hai jo debugging

ke liye helpful hoti hai.

str__ Method

e Purpose: Yeh object ki readable aur “informal” string
representation deta hai. End-users ke liye information
display karne ke liye use hota hai.

e Kab Call Hota Hai: Jab aap str(object) ya
print(object) use karte ho.

e Output Kaisa Hona Chahiye: Output user-friendly aur
readable hona chahiye.

Example:

class
def (self, name, age):
self.name = name
self.age = age

def (self):
return

Usage
person = Person(wls)
orint(person) # Output: Naveed is 20 years old.

Explanation:
e __str__ ek concise aur readable description deta hai

Jo end-users ke liye bana hota hai.

Feature __repr__ __str__
Purpose Formal aur unambiguous Informal aur readable
Audience Developers (debugging) End-users (display)

Call Method | repr(object) ya Python shell | str(object) ya print(object)

Agar __str__ define na ho Define ho to yeh use nahi

Fall K :
allbac to yeh use hota hai hota

Combined Example

Agar dono methods ek class me ho to kaise kaam karte
hain:

class

def (self, name, price):
self.name = name
self.price = price

def (self):
return

def (self):
return

Usage

product = Product(,)
orint(repr(product))

Output: Product(name="Laptop), price=1500)
print(product) # Output: Laptop: $1500

Explanation:

o __repr__:Developers ke liye detailed description.
e __str__:Users ke liye readable output.

summary

e __repr__:Formal aur detailed output (useful for
developers).

e __str__:Friendly aur readable output (useful for end-
users).

e Fallback: Agar __str__ define na ho, to Python
__repr__ ko use karega.

The full lesson is now available on the Needi Developer
YouTube channel.

Operator Overloading

Operator overloading ka matlab hai kisi existing operator
ka behavior customize karna jab wo user-defined objects
ke sath use hota hai. Iska matlab hai ki aap Python ke

built-in operators (like +, =, *, etc.) ko apne custom classes
ke objects ke liye define kar sakte ho.

Why Use Operator Overloading?

.Readable Code: Aap complex functionality ko readable
aur concise syntax ke through implement kar sakte ho.

2.Readl-Life Simulations: Custom objects ko natural aur
intuitive way me manipulate karne ki flexibility milti hai.

3.Customization: Objects ke behavior ko apne
requirement ke mutabig change kar sakte ho.

How Does It Work?

Operator overloading karne ke liye aapko special methods
(dunder/magic methods) use karne hote hain. Har
operator ke liye ek corresponding magic method hota hai.

Operator Method Example
+ __add_ _ objl + obj2

- __Sub__ objl - obj2

* __mul__ objl * obj2

/ __truediv__ obj1 [obj2
== __eq__ objl == obj2

< . | objl < obj2

> __gt__ objl > obj2

Overloading the + Operator

Without Overloading:

class ;
def (self, x, y):
self.x = x
selfy =y

pl = Point(2, 3)
p2 = Point(4, 5)

This will raise an error
result = pl + p2

Without Overloading:

class ;
def (self, x, y):
selfx = x
selfy =y

def (self, other):
return Point(self.x + other.x, self.y + other.y)

def (self):
return

Usage

pl = Point(2, 3)

p2 = Point(4, 5)

result = pl + p2

orint(result) # Output: (6, 8)

Explanation:
e __add__ method ko redefine karke humne + operator
ka behavior customize kiya.
e Do Point objects add hone par unke x aur y
coordinates ko add karke ek naya Point return hota hai.

Other Examples

Overloading * for Custom Multiplication:

class ;
def (self, x, y):
self.x = x
selfy =y

def (self, scalar):
return Point(self.x * scalar, self.y * scalar)

def (self):
return

Usage

pl = Point(2, 3)

result = pl*

orint(result) # Output: (6, 9)

Overloading Comparison Operators (<, >):

class
def (self, name, age):
self.name = name
self.age = age

def (self, other):
return self.age < other.age

Usage
personl = Person(
person2 = Person(,15)

print(personl < person2) # Output: False

Explanation:
o __It__ method define karke age ke basis par
compadrison ka behavior customize kiya gaya.

Key Points to Remember

1.Operator overloading se readability aur functionality
dono improve hoti hain.

2.Har operator ke liye ek specific magic method hota hai.

3.0verloading ka misuse na karein; operations ka
behavior logical aur intuitive hona chahiye.

summary

Operator overloading Python me ek powerful feature hai jo
user-defined objects ke behavior ko natural aur readable

banata hai. Iska proper use complex tasks ko simplify kar
sakta hai aur code ko zyada maintainable banata hai.

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

Build a Simple Banking System

Create a banking system using object-oriented
programming in Python. The system should allow a user to
perform the following actions:
.Check Balance: Display the current account balance.
2.Deposit Money: Add money to the account.
3.Withdraw Money: Deduct money from the account if
the balance is sufficient.
4.Exit: Close the application.
Requirements:
e Use a class BankAccount to represent the bank
account.
e Implement methods for each operation
(check_balance, deposit, withdraw).
e Use a simple loop to allow the user to perform multiple
actions until they choose to exit.

s
‘ﬂ,
P
(1)

s
\e
D‘—

Lassorn comolars

Lesson 10: Python Modules

Modules Python ke ready-made tools hote hain jo aapke
kaam ko easy banate hain. Yeh ek tarah ke pre-written
code libraries hote hain jinko aap apne programs me
directly use kar sakte ho. Iska fayda yeh hota hai ki aapko
sab kuch scratch se likhne ki zarurat nahi padti.

Why Use Modules?

e Code Reusability: Ek baar likha code baar-baar alag
programs me use kar sakte ho.
e Time Saving: Ready-made solutions milte hain, to time

bachta hai.
e Organized Code: Modules use karne se code clean aur

manage karne me easy hota hai.

e Specialized Tools: Har module ek specific kaam ke liye
hota hai, jaise math calculations, file handling, ya
random numbers generate karna.

How to use Modules?

Module ko use karne ke liye import keyword ka use karte
hain.

Example:

module _name

Examples of Python's Built-in Modules

1. os Module

os module ka use operating system ke sath kaam karne ke
liye hota hai.
Kahan Use Hota Hai?

e Current directory check karne me

e Files aur folders create/delete karne me

Example:

Import os

Current directory ka naam
print(

Naya folder banaiye
os.mkdir()

2. math Module

math module advanced mathematical functions provide
karta hai, jaise square root, power calculation, etc.
Kahan Use Hota Hai?

e Complex calculations ke liye
e Rounding numbers ke liye

Example:

Import math

Square root nikalna

print(, math.sqrt(16))

Pi ki value dekhna
print(, math.pi)

3. random Module

random module ka use random numlbers ya random
choices generate karne ke liye hota hai.
Kahan Use Hota Hai?

e Games banane me

e Test data banane ke liye

Example:

Import random

1se 10 ke beech ek random numlber generate kare
print(, random.randint(1, 10))

Ek random item choose kare list me se
choices = | , , |

print(, random.choice(choices))

Benefits of Modules

.Development time save hota hai.
2.Code easy aur optimized hota hai.
3.Programs ko samajhna aur maintain karna easy hota
hai.
os, math, aur random jaise modules aapko powerful aur

efficient programs banane me help karte hain, bina zyada
effort ke!

The full lesson is now available on the Needi Developer
YouTube channel.

Python meif __name__ =="__main__" ek special
construct hai jo aapke program ka behavior control karne
ke liye use hota hai, jab aapka Python file directly run hota
hai ya kisi aur file me import hota hai.

What is its basic function?

e Direct Execution ke liye Code Chalana:
Jab file ko directly execute kiya jata hai
(python myfile.py), tab iska code chalega.
e Import ke Samay Code Avoid Karna:
Jab file ko kisi aur file me import kiya jata hai, to
if __name__=="__main__" ke andar ka code nahi
chalega.

e Har Python file ka ek special variable hota hai

__hame_ _.
e Jab file directly chalti hai, tab _ _name__ ki value
" _main__" hoti hai.

e Agar file import hoti hai, to _ _name_ _ us file ke naam
ke barabar hoti hai ("myfile”).

How its Work?

I: File Directly Run Ho Rahi Hai

Example:

myfile.py
def ():
print(

Output (when running python myfile.py):

This file is running directly.

Hello from myfile!

2: File Import Ho Rahi Hai

Example:

main.py
import myfile

print(

Output (when running python main.py):

This is main.py.

Yahan par myfile ka code jo if __name__=="__main__"
ke andar hai, nahi chalega.

Why Use This?

e Code Reusability:
Aap ek file ka code import karte ho bina uske execution
code ko chalaye.

e Testing:
File ke andar kuch functions aur logic test karne ke liye
use hota hai, jab wo file akeli chal rahi ho.

e Cleaner Structure:
Isse program ka flow clear hota hai, aur unnecessary
code execution avoid hota hai.

summary
if __name__ =="__main__" ek best practice hai jo
ensure karta hai ki:
e File ka kuch code tabhi chale jab wo file directly execute
ho.

e |mport ke samay unnecessary code execute na ho.

The full lesson is now available on the Needi Developer
YouTube channel.

Installing Third-Party Libraries with pip

Python ka pip ek package manager hai jo aapko
third-party libraries aur tools install karne ki facility deta
hai. Ye libraries aapke projects ke kaam ko asaan aur
efficient banate hain.

What is pip?

e pip ka full form hai: "Pip Installs Packages'.

e Ye ek command-line tool hai jo Python Package Index
(PyPI) se libraries download aur install karta hai.

e Iske through aap Python ki built-in functionality ko
extend kar sakte ho

How to Use pip

. pip Ko Check Karna (Installed Hai Ya Nahi):

Pehle ensure karein ki pip installed hai:

pip --version

Output kuch is tarah ka hona chahiye:

pip 21.3.1 from ... (python 3.x)

Agar pip install nahi hai, to aap is command se install kar
sakte ho:

python -m ensurepip --upgrade

2. Third-Party Library Install Karna:

Koi library install karne ke liye command:

pip install <library-name>

Example: NumPy library install karna:

pip install numpy

Output:

Collecting numpy
Downloading numpy-1.23.3-cp39-cp39-win_amd64.whl (14 MB)

Installing collected packages: numpy
Successfully installed numpy-1.23.3

3. Library Upgrade Karna:

Aap existing library ka latest version install kar sakte ho:

pip install --upgrade <library-name>

Example: NumPy library install karna:

pip install -—upgrade numpy

4. Library Uninstall Karna:

Agar kisi library ki zarurat nahi hai, to aap ise uninstall kar
sakte ho:

pip uninstall <library-name>

Example:

pip uninstall numpy
How to check if a library is installed?

Aadp installed libraries ki list dekhne ke liye ye command
use kar sakte ho:

Output:

Package Version

numpy 1.23.3
requests 2.28.1

Requirements File

Agar aap ek project ke liye multiple libraries install karna
chahte ho, to unhe ek file me list kar sakte ho:

1. Create a file named requirements.txt:

numpy
requests
pandas

2. Install all libraries in one command:

pip install -r requirements.txt

Why Use pip?

e Easy Access to Libraries: Thousands of pre-built
libraries PyPI par available hain.

e Time-Saving: Complex tasks ke liye already optimized
solutions use kar sakte hain.

e Project Management: Virtual environments ke saath
pip libraries ko alag-alag projects ke liye manage kar
sakta hai.

summary
e pip ek powerful tool hai jo Python developers ka kaam
asaan banata hai.
e Aap libraries ko install, update, aur uninstall kar sakte
ho.
e Libraries ko manage karne ke liye requirements.txt ka
use karo.

The full lesson is now available on the Needi Developer
YouTube channel.

Virtual Environments (venv)

Python ke virtual environments (venv) ek tarah ke
iIsolated workspace hote hain jisme adp apne project-
specific dependencies (libraries, packages, etc.) manage
kar sakte ho bina system-wide Python installation ko affect
kiye.

Why is a Virtual Environment necessary?

 Dependency Conflicts Avoid Karna
Agar ek project me ek package ki specific version
chahiye aur dusre project me usi package ki different
version chahiye, to virtual environment yeh problem
solve karta hai.

e Clean Project Setup
Har project ka apna environment hota hai, jo
dependencies aur configurations ko isolated rakhta
hai.

e Easy Deployment
Virtual environment me sirf wahi packages hote hain jo
project ko chahiye, isliye deployment smooth hota hai.

How to create Virtual Environment

. Create Virtual Environment

Command:

python -m venv myenv

e python: System Python interpreter.
e -m venv: Module to create virtual environment.
e myenv: Virtual environment ka naam.

2. Activate Virtual Environment

Windows:

myenv \Scripts \ activate

Mac or Linux:

source myenv/bin/activate

Aapko terminal ke left side me (myenv) likha milegaq, jo
batata hai ki environment active hai.

3. Deactivate Virtual Environment

Command:

Yeh system-wide Python me wapas le aata hai.

Installing Packages in Virtual Environment

1. Packages Install Karna

Virtual environment activate karne ke baad normal tarike
se install karte hain:

pip install package_name

2. Packages Ki List Dekhna

3. Requirements File Banana

Jo bhi packages install hain unko list karne ke liye:

pip freeze > requirements.txt

4. Requirements File Se Install Karna

pip install -r requirements.txt

Benefits of Virtual Environment

1.Alag-alag projects ke liye alag-alag environments ban
jate hain.
2.System-wide Python environment ko clean aur stable
rakhta hai.
3.Deployment aur collaboration easy banata hai.
Pro Tip: Hamesha virtual environment ka use karo jab bhi
aap kisi naye project pe kaam shuru karo!

The full lesson is now available on the Needi Developer
YouTube channel.

Exercise

File Management Script

Write a script that uses the os, math, and random
modules to perform the following tasks:

e Create a Directory:
o Use the os module to create a directory named
RandomfFiles in the current working directory.
e Generate Random Files:
o Use the random module to generate 5 random
filenames.
o Each filename should be a random number
between 1000 and 9999 with a .txt extension.
o Example filenames: 1054.txt, 8762.txt.
e Write Data to Files:
o For each file, generate a random number and
calculate its square root using the math module.
o Write the random number and its square root into
the file in this format:

Random Number: 2b

Square Root: 5.0

e Display the Created Files:
o List all the files created in the RandomFiles directory
using the os module.

Lesson 11: Advanced Python Concepts

Introduction to Generators and
lterators

Python me generators aur iterators kaafi powerful tools
hain jo hum data ko efficiently handle karne ke liye use
karte hain, especially jab large datasets ke saath kaam
karte hain ya data ko dynamically generate karna ho.

What is Ilterators?

Iterator ek aisi object hoti hai jo kisi collection (like list,
tuple, ya string) ke elements ko ek-ek karke access karne
me madad karti hai.
Iterator kaise kaam karta hai?
e |terator ke paas do important methods hote hain:
o __iter__() — Jo iterator object ko return karta hai.
o __next__() - Jo sequence ka agla element return
karta hai. Agar sequence khatam ho jaye, toh
Stoplteration exception raise hota hai.

Example:

numbers = [10, 20, 30]
iterator = iter(numbers) # lterator object banaya

orint(next(iterator)) # Output: 10
orint(next(iterator)) # Output: 20
orint(next(iterator)) # Output: 30
print(next(iterator)) # Stoplteration error raise karega

Yahan hum list ke elements ko ek-ek karke access karte
hain.

What is Generators?

Generator ek special type ka iterator hai jo function aur
yield keyword ke zariye banaya jata hai.

e Ye saare data ek saath return karne ke bajaye,
ek-ek karke on-demand generate karta hai.

e Generators memory-efficient hote hain, kyunki ye
saara data memory me store nahi karte.

Generator kaise kaam karta hai?

e yield keyword use karke generator function se value
return ki jati hai.

e Jab generator ke __next_ _() method ko call karte
hain, execution wahi se resume hoti hai jahan se last
yield hua tha.

Example:

def (n):
count =
while count <= n:

yield count # Current value ko pause karke return karega
count +=

H#H Generator use karna

counter = count_up_to(5)

print(next(counter)) # Output: 1
orint(next(counter)) # Output: 2
print(next(counter)) # Output: 3

What is Generators?

Feature Iterator Generator

Generator ek function ke

Definition Iterator ek object hota hai. : .
zariye banta hai.

Manually __iter__() aur
Keyword __next__() liknna padta
hai.

yield keyword use hota
hai.

Segquence ko memory me Data on-the-fly generate
Memory Usage . Y Y9

store karta hai. karta hai.
Efficionc Less efficient for large More efficient for large
Y datasets. datasets.
summary

e Iterator predefined objects hote hain jo sequence ko
traverse karte hain.
e Generator ek tarika hai efficiently data generate karne
ka, jab poore dataset ki zarurat na ho.
Dono hi Python ke data processing ko faster aur memory-
efficient banate hain!

The full lesson is now available on the Needi Developer
YouTube channel.

Map, Filter, and Reduce Function

Python me map, filter, aur reduce functions kaafi powerful
tools hain jo functional programming concepts ke saath
kaam karte hain. Ye functions aapko data processing me
madad karte hain, aur operations ko short aur readable
banate hain.

1. map() Function

map() ka kaam hai ek given function ko kisi sequence ke
har element par apply karna aur ek nayi sequence return

karna.
Syntax:

map(function, iterable)

e function: Aapka function jo har element par apply
hoga.
e iterable: Aapki list, tuple, ya koi aur sequence.

Example:

Squaring each number in a list
numbers = [1, 2, 3, 4, 5]

squared = map(lambda x: x**2, numbers)
orint(list(squared)) # Output: [1, 4, 9,16, 25]

Yahan har number ko square kar diya gaya.

Lambda function bnany ka ek tareeqa hai esko next
chapter me details me seekhy gy.

2. filter() Function

filter() ka kaam hai ek given condition ke basis par
sequence ke elements ko filter karna. Ye sirf un elements

ko return karta hai jo condition ko satisfy karte hain.
Syntax:

filter(function, iterable)

e function: Ek condition-checking function jo True ya
False return karega.

e iterable: Sequence jisme filter lagana hai.
Example:

Filter odd numbers from a list
numbers = [1,2, 3, 4, 5, 6]

odd_numbers = filter(lambda x: x % 2 1= 0, numbers)
orint(list(odd_numbers)) # Output: [1, 3, 5]

Yahan sirf odd numbers ko filter kiya gaya.

3. reduce() Function

reduce() function cumulative operation perform karta hai,
jaise sum, multiplication, ya concatenation. Ye ek iterable
ke saare elements ko ek single value me reduce kar deta
hai.

Syntax:

reduce(function, iterable)

e function: Ek function jo do arguments leta hai aur
cumulative result deta hai.

e iterable: Sequence jisme operation karna hai.
Example:

from functools import reduce

Multiply all numbers in a list

numbers = [1, 2, 3, 4]

result = reduce(lambda x, y: x * y, numbers)
print(result) # Output: 24

Yahan saare numbers ko multiply karke ek hi value me
reduce kar diya.

Comparison of map, filter, and reduce:

Function Purpose Output

Apply function to all elements in
map PPRY Transformed sequence.

a seqguence.

. Select elements based on a :
filter Filtered sequence.

condition.

Combine all elements into a : :
reduce Single cumulative value.

single result.

Why Use These Functions?

e Shorter Code: Ek line me kaam ho jata hai jo multiple

lines me hota.
e Readability: Code zyada clean aur understandable

hota hai.
e Efficiency: Functional programming ka benefit milta

hai.

summary

e map(): Apply a function to all elements.

e filter(): Select elements based on a condition.

e reduce(): Combine all elements into one result.
Ye functions aapko Python me data processing tasks ko
simplify karne me madad karte hain!

The full lesson is now available on the Needi Developer
YouTube channel.

Lambda Functions

Python mein lambda functions ek short aur concise way
hai functions likhne ka. Inko anonymous functions bhi
kehte hain kyunki ye bina kisi naam ke hoti hain. Lamlbda
functions ek single line mein likhe jaate hain aur yeh tab
use hote hain jab hume chhoti aur temporary functionality
chahiye hoti hai.

Syntax:

lamlbda arguments: expression

e arguments: Input parameters, jaise normal functions

mein hote hain.
e expression: Ek single line ka expression jo evaluate
hoke result return karta hai.

Example:

square = lambdad x: X * X
orint(square(5)) # Output: 25

Key Features of Lamlbda Functions

1.Single Expression: Lambda functions ek hi line ka
expression handle karte hain.

2.No Name: Ye anonymous hote hain, yani inka koi naam
nahi hota unless aap inko kisi variable mein store
karein.

3.Temporary Use: Ye functions chhoti aur one-time
functionality ke liye useful hain.

4.Inline Use: Ye functions generally inline use hote hain,
jaise higher-order functions ke saath.

Why Use Lambda Functions?

e Jab aapko ek simple functionality likhni ho bina ek pura
function define kiye.

e Jab ek hi line ka kaam ho aur function ko reuse karne ki
zarurat na ho.

e Functional programming mein (like map, filter, reduce
ke saath) kaam karne ke liye.

Examples of Lambda Functions

1. Simple Lambda Function

add = lambda g, b:a + b

orint(add(2, 3)) # Output: 5

2. Using Lambda with map()

map() function ka use ek list ke har element par operation
karne ke liye hota hai.

numbers = [1, 2, 3, 4]
squares = list(map(lambda x: x * x, numbers))
orint(squares) # Output: [1, 4, 9, 16]

3. Using Lambda with filter()

filter() function ka use ek list ke elements ko filter karne ke
liye hota hai.

numbers = [1,2, 3,4, 5, 6]
even_numbers = list(filter(lombda x; x % 2 == 0, numbers))
print(even_numbers) # Output: [2, 4, 6]

4. Using Lambda with sorted()
sorted() function ka use custom sorting karne ke liye hota
hai.

students = [(, 90), (,85), (,95)]

sorted _students = sorted(students, key=lambda x: x[1])

print(sorted_students)
Output: [('Sara’, 85), (Naveed, 90), (‘'Fatima’, 95)]

Limitations of Lambda Functions

1.Single Expression Only: Lambda functions ek se zyada
lines handle nahi karte.

2.No Name: Inka naam nahi hotaq, isliye debugging
mushkil ho sakti hai.

3.Not for Complex Logic: Ye sirf simple operations ke liye
suitable hain.

When to Use Lambda Functions?

1.Jab aapko ek chhoti si functionality likhni ho.

2.Jab aap temporary use ke liye ek function create karna
chahte hain.

3.Functional programming methods jaise map, filter, aur
reduce ke saath kaam karte waqt.

The full lesson is now available on the Needi Developer
YouTube channel.

Walrus Operator (:=)

Walrus Operator ka asal naam Assignment Expression
Operator hai, aur ye Python 3.8 me introduce hua tha. Iska
symbol := hai, jo aapko ek variable me value assign karte
waqt uska use karne ki facility deta hai.

Iska naam Walrus Operator isliye rakha gaya kyunki iska
symbol (:=) ek walrus ke face jaisa lagta hai. J,

Purpose of Walrus Operator

e Reduces Code Length: Aap ek hi expression me value
assign aur uska use kar sakte hain.

e Improves Readability: Bar-bar alag line me value
assign karne ki zarurat nahi hoti.

Syntax:

variable := expression

Normal Assignment vs Walrus Operator

Without Walrus Operator:

data = input(
if len(data) > 5:
print(

With Walrus Operator:

if (data := input()) and len(data) > 5:
print()

Where to Use the Walrus Operator

1. In Loops

Walrus Operator loops me kaafi useful hai, jab aap ek hi
variable me repeatedly data assign aur check karte hain.

Without Walrus Operator:

numbers = [1, 2, 3, 4, 5]
while len(numbers) >

current = numbers.pop()
print(f'Processing: {current}")

With Walrus Operator:

numbers = [1, 2, 3, 4, 5]

while (current := numbers.pop()):
print(f'Processing: {current}")

2. In Conditional Statements

Conditions check karte waqgt bar-bar variable assign karne
ki zarurat nahi hoti.
Without Walrus Operator:

data = input('Enter something: ")

if len(data) >
print(f'Length is greater than 3: {data}")

With Walrus Operator:

if (data := input('Enter something: ")) and len(data) > 3:
print(f'Length is greater than 3: {data}")

3. In List Comprehensions

List comprehensions me efficiently data assign aur use
karna possible hota hai.
Without Walrus Operator:

results = []
for x in range(10):
square = x**
If square >
results.append(square)
orint(results)

With Walrus Operator:

results = [square for x in range(10) if (square := x**2) > 20]

orint(results)

Purpose of Walrus Operator

e Assignment (=): Ek variable me value assign karta hai,
aur usse use karne ke liye dusri line me likhna padta
hai.

e Walrus (:=): Ek hi line me value assign aur use karne ki
flexibility deta hai.

Key Points to Remember

e Requires Python 3.8 or Newer: Ye feature sirf Python 3.8
aur uske baad wale versions me kaam karta hai.

e Not for Regular Assignments: Iska use sirf tab karein
jab aapko ek hi line me value assign aur use karni ho.

Why Use Walrus Operator?

e Reduces redundancy in code.

e Makes complex conditions simpler and easier to read.

e Helpful in loops and comprehensions.
Walrus Operator aapke code ko concise aur efficient
banata hai, lekin iska use tab karein jab zarurat ho aur
readability khnaraab na ho.

The full lesson is now available on the Needi Developer
YouTube channel.

Mega Knight Projects

1. Student Management System

A Student Management System is a comprehensive
project that combines almost all the concepts from your
Python course, providing a real-world scenario to test your
skills.

Project Description

You will create a command-line Student Management
System where users (teachers) can:

.Add students to a database.

2.View student details.

3.Update student information.

4.Delete student records.

5.Search for students.

6.Generate a performance report.

The project will use file handling to save data persistently,
and incorporate functions, OOP, control flow, error
handling, and data structures.

The full project is now available on the Needi Developer
YouTube channel.

2. Virtual Assistant Project

Create a Python-based virtual assistant that listens to user
voice commands, processes them, and provides
responses via voice and text. This assistant will utilize
Python's speech recognition and text-to-speech libraries
to interact with the user.

Key Features

1.Greeting the User:

o The assistant greets the user with a voice response
based on the time of day (morning, afternoon,
evening).

2.Voice Command Recognition:

o The assistant will understand voice commands and
convert them into text using the
speech_recognition module.

3.Responding via Voice:

o The assistant replies to the user with a voice
response using pyttsx3 or gTTS.

4.Performing Tasks:

o Open basic system applications (like Notepad or
Calculator).

o Fetch current time and say it.

o Tell jokes from a predefined list.

o Search for specific files or folders in a directory.

5.Handling Errors:

o Gracefully handles invalid commands or voice
recognition issues with a user-friendly response.

The full project is now available on the Needi Developer
YouTube channel.

3. Inventory Management System

Create a Python-based Inventory Management System
that allows users to manage product stock, track sales,
and generate reports.

Key Features

l.Product Management:
o Add, update, or delete product details (name, price,
quantity, etc.).
2.Stock Management:
o Check available stock for products.
o Update stock levels after a sale or purchase.
3.Sales Tracking:
o Record sales transactions (product, quantity sold,
total price).
o Calculate and display total revenue.
4.Reports:
o Generate reports showing:
= Products running low on stock.
= Total sales and revenue.
5.User-Friendly Interface:
o Use command-line interaction to display options
and collect user input.

The full project is now available on the Needi Developer
YouTube channel.

4. Personal Expense Tracker

Create a Python-based application to track and analyze
personal expenses.

Key Features

l.Expense Management:
o Add, update, and delete expense entries (date,
category, amount, description).
2.Category-Based Analysis:
o Categorize expenses (Food, Travel, Entertainment).
o Display total spent per category.
3.Monthly Summary:
o Provide a monthly report showing:
= Total expenses.
= Most spent category.
4.Savings Calculator:
o Compare monthly expenses to a user-defined
budget and calculate savings.
5.Data Visualization (Optional):
o Display bar charts or pie charts of expense
distribution using Matplotlib.

The full project is now available on the Needi Developer
YouTube channel.

Lassorn comolata—crazt joo)!

Advanced Tips for Becoming o

Python Knight

1.Practice Daily:

o Coding is like learning a new language—the more
you practice, the better you get. Dedicate at least
30 minutes daily to writing Python code.

2.Explore Real-World Projects:

o After completing your book, start working on real-
world projects like web development
(Django/Flask), data analysis (Pandas/Numpy), or
automation scripts.

3.Learn Advanced Concepts:

o Dive into data structures, algorithms, and design
patterns. These are crucial for writing optimized and
scalable code.

4.Contribute to Open Source:

o Contributing to open-source projects will not only
enhance your skills but also connect you with a
community of developers worldwide.

5.Keep Learning:

o Python evolves constantly, so keep up with new
ibraries and features. Follow platforms like Real
Python, Stack Overflow, and GitHub.
6.Understand Problem-Solving:

o Focus on breaking complex problems into smaller
parts and solving them step by step.

7.Read Code Written by Others:

o Explore repositories on GitHub to understand
different coding styles and techniques.

8.Build a Portfolio:

o Showcase your projects on platforms like GitHub,
Kaggle, or LinkedIn.

Congratulatons

You ars now 2 Python nght

